
Wireless Access and Terminal Mobility
in CORBA

May 2005
Version 1.2

formal/05-05-02

Copyright © 2002, Borland Software Corporation
Copyright © 2002, Highlander Engineering, Inc.
Copyright © 2002, Nokia
Copyright © 2005, Object Management Group
Copyright © 2002, Sonera Corporation
Copyright © 2002, University of Helsinki
Copyright © 2002, Vertel Corporation

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Contents
Preface . v

1. Overview . 1-1
1.1 Design Rationale . 1-1
1.2 Proof of Concept . 1-2
1.3 References . 1-2

2. Architectural Framework . 2-1
2.1 Key Concepts . 2-1
2.2 Overall Architecture. 2-2

3. Mobile IOR . 3-1
3.1 IIOP Profiles in Mobile IOR . 3-1

3.1.1 Address information in IIOP Profiles in
Mobile IORs . 3-2

3.1.2 Mobile Object Key Format 3-2
3.2 The Mobile Terminal Profile . 3-2

3.2.1 Mobile Terminal Profile Structure 3-3
3.2.2 TAG_HOME_LOCATION_INFO Component. 3-3

3.3 Translation to Mobile Target Object. 3-4
3.4 Interoperability with GIOP 1.0 and 1.1 3-4
3.5 Additional Type Definitions . 3-5

4. Home Location Agent . 4-1
4.1 Location Update . 4-1
4.2 Discovery . 4-4
4.3 Message Processing . 4-4
May 2005 Wireless Access & Terminal Mobility in CORBA ,v1.2 i

Contents
4.4 Terminal Ids . 4-5

5. Access Bridge. 5-1
5.1 Discovery . 5-1
5.2 Query . 5-2
5.3 Message Processing . 5-2
5.4 Mobility Event Notifications . 5-3

6. Terminal Bridge. 6-1
6.1 Mobility Event Notifications . 6-1

7. GIOP Tunneling . 7-1
7.1 Tunnel Establishment . 7-2

7.1.1 Transport End-Point Detection 7-2
7.2 GIOP Tunneling Protocol. 7-2

7.2.1 GTP Message Structure 7-3
7.2.2 GTP Messages . 7-3
7.2.3 IdleSync Message . 7-4
7.2.4 EstablishTunnelRequest Message. 7-5
7.2.5 EstablishTunnelReply Message 7-6
7.2.6 ReleaseTunnelRequest Message 7-8
7.2.7 ReleaseTunnelReply Message 7-9
7.2.8 HandoffTunnelRequest Message 7-10
7.2.9 HandoffTunnelReply Message 7-11
7.2.10 OpenConnectionRequest Message 7-12
7.2.11 OpenConnectionReply Message 7-12
7.2.12 CloseConnectionRequest Message 7-13
7.2.13 CloseConnectionReply Message 7-14
7.2.14 ConnectionCloseIndication Message 7-15
7.2.15 GIOPData Message . 7-16
7.2.16 GIOPDataError Message 7-17
7.2.17 GTPForward Message. 7-17
7.2.18 GTPForwardReply Message 7-18
7.2.19 Error Message. 7-19

7.3 TCP Tunneling . 7-20
7.4 UDP Tunneling . 7-20

7.4.1 UDP Tunneling Protocol 7-20
7.4.2 Sequence Numbering . 7-22
7.4.3 Retransmission Policy 7-22
7.4.4 Fragmentation. 7-22
7.4.5 InitialAccessRequest . 7-22
ii Wireless Access & Terminal Mobility in CORBA ,v1.2 May 2005

Contents
7.4.6 InitialAccessReply . 7-23
7.4.7 Pause . 7-23
7.4.8 Resume . 7-24
7.4.9 Acknowledge . 7-24
7.4.10 GTPData . 7-24
7.4.11 Close Request . 7-24
7.4.12 CloseReply . 7-25
7.4.13 CloseIndication. 7-25

7.5 WAP Tunneling . 7-26
7.5.1 Wireless Datagram Protocol 7-26
7.5.2 WAP Tunneling Protocol 7-26
7.5.3 WAPTP address types . 7-27

7.6 Bluetooth Tunneling. 7-27
7.6.1 LTP Tunneling Protocol 7-28
7.6.2 Fragmentation. 7-28

8. Handoff and Access Recovery . 8-1
8.1 Initiation. 8-2
8.2 Network Initiated Handoff . 8-3

8.2.1 Old Access Bridge . 8-3
8.2.2 New Access Bridge . 8-4
8.2.3 Terminal Bridge . 8-5
8.2.4 Message Sequence Chart 8-6
8.2.5 Alternative Handoff Procedure 8-6
8.2.6 IDL . 8-7

8.3 Terminal Initiated Handoff . 8-8
8.3.1 Terminal Bridge . 8-8
8.3.2 New Access Bridge . 8-8
8.3.3 Old Access Bridge . 8-9
8.3.4 Message Sequence Chart 8-9
8.3.5 IDL . 8-10

8.4 Access Recovery . 8-10
8.4.1 Recovery to the Old Access Bridge 8-10
8.4.2 Recovery to New Access Bridge 8-11

8.5 GTP Message Forwarding . 8-14
8.6 Terminal Tracking . 8-16

A. Conformance. A-1

 B. OMG IDL . B-1
May 2005 Wireless Access & Terminal Mobility in CORBA , v1.2 iii

Contents
iv Wireless Access & Terminal Mobility in CORBA ,v1.2 May 2005

Preface
About the Object Management Group
The Object Management Group, Inc. (OMG) is an international organization supported by
over 600 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
Conformance to these specifications will make it possible to develop a heterogeneous
applications environment across all major hardware platforms and operating systems.

OMG’s objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?
The Common Object Request Broker Architecture (CORBA), is the Object Management
Group’s answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 v

OMG Documents
The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only when
representatives of the OMG membership accept them as such by vote.

Formal documents are available in PostScript and PDF format. You will find our docu-
ments in the OMG Specifications Catalog, which is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The documentation is organized as follows:

OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications
Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

Contacting OMG
Contact the Object Management Group at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

http://www.omg.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.
vi Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary (if applicable). Italic text also
represents the name of a document, specification, or other publication.

Acknowledgments
The following is a list of submitters and/or supporters of this specification.

• Borland Software Corporation
• Highlander Engineering, Inc.
• Nokia
• Sonera Corporation
• University of Helsinki
• Vertel Corporation
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 vii

viii Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

Overview 1
This document specifies an architecture and interfaces to support wireless access and
terminal mobility in CORBA.

Contents

This chapter contains the following sections.

1.1 Design Rationale
The basic design principles have been client-side ORB transparency and simplicity.
Transparency of the mobility mechanism to non-mobile ORBs has been the primary
design constraint. We have rejected all solutions that would require modifications to a
non-mobile ORB in order for it to interoperate with CORBA objects and clients
running on a mobile terminal. In other words, a stationary (non-mobile, or fixed
network) ORB does not have to implement this specification in order to interoperate
with CORBA objects and clients running on mobile terminals.

The specification was designed to provide a minimal useful functionality for CORBA
applications, in which the client, the server, or both of them are running on a host that
can move.

Section Title Page

“Design Rationale” 1-1

“Proof of Concept” 1-2

“References” 1-2
May 2005 CORBA Wireless Access & Terminal Mobility, v1.2 1-1

1

1.2 Proof of Concept
The design is heavily affected by experiences of the EC/ACTS project DOLMEN
(AC036) that implemented a prototype of CORBA extensions to support terminal
mobility. The DOLMEN solution is described, for example, in the OMG Document
telecom/98-08-08.

This specification has been implemented by the University of Helsinki as an Open
Source extension to the MICO Open Source ORB, called MIWCO [MIWCO].

The GIOP over Bluetooth Tunneling Specification has been implemented in the
EC/ITEA project Vivian [VIVAN] as an extension to MIWCO.

1.3 References
[BT-SIG] Bluetooth SIG, Specification of the Bluetooth System - Version 1.1, Volume
1 & 2. February 2001,
Available: http://www.blue-tooth.com/developer/specification/specification.asp.

[GFD] WAP Forum. WAP General Formats Document. WAP Forum document WAP-
188-WAPGenFormats, Version 15-Aug-2000.

[MIWCO] MIWCO - An Open Source Implementation of Wireless CORBA.
Available: http://www.cs.helsinki.fi/u/kraatika/wCORBA.html.

[RFC 2988] Computing TCP's Retransmission Timer, IETF, RFC 2988, November
2000.

[VIVIAN] VIVIAN Consortium, GIOP Tunneling over Bluetooth L2CAP.
Available:http://www-nrc.nokia.com/Vivian/Public/Html/ltp.html.

[WDP] WAP Forum. Wireless Datagram Protocol Specification. WAP Forum
Document WAP-201-WDP, Approved Version 19-February-2000.
1-2 CORBA Wireless Access & Terminal Mobility, v1.2 May 2005

Architectural Framework 2
Contents

This chapter contains the following sections.

2.1 Key Concepts
The key concepts in this specification are:

• Mobile IOR,

• Home Location Agent,

• Access Bridge,

• Terminal Bridge, and

• GIOP Tunneling Protocol.

The Mobile IOR is a relocatable object reference. It identifies the Access Bridge and
the terminal on which the target object resides. In addition, it identifies the Home
Location Agent that keeps track of the Access Bridge to which the terminal is currently
attached.

The Home Location Agent keeps track of the current location of the terminal. It
provides operations to query and update terminal location. The Home Location Agent
also provides operations to get a list of initial services and to resolve initial references
in the home domain.

Section Title Page

“Key Concepts” 2-1

“Overall Architecture” 2-2
May 2005 CORBA Wireless Access & Terminal Mobility, v1.2 2-1

2

The Access Bridge is the network side end-point of the GIOP tunnel. It encapsulates
the GIOP messages to the Terminal Bridge and decapsulates the GIOP messages from
the Terminal Bridge. The Access Bridge also provides operations to get a list of initial
services and to resolve initial references in the visited domain. The Access Bridge may
also provide notifications of terminal mobility events.

The Terminal Bridge is the terminal side end-point of the GIOP tunnel. It encapsulates
the GIOP messages to the Access Bridge and decapsulates the GIOP messages from
the Access Bridge. The Terminal Bridge may also provide a mobility event channel
that delivers notifications related to handoffs and connectivity losses.

The GIOP tunnel is the means to transmit GIOP messages between the Terminal
Bridge and the Access Bridge. The generic GIOP Tunneling Protocol defines how
GIOP messages are transmitted. The protocol also specifies necessary control
messages to establish, release, and re-establish a GIOP tunnel. The GIOP Tunneling
Protocol (GTP) is an abstract, transport-independent protocol. This specification
defines four concrete tunneling protocols, that is how GTP messages are transmitted
over TCP, UDP, WAP WDP, and Bluetooth L2CAP.

2.2 Overall Architecture
The overall architecture is depicted in Figure 2-1. It identifies three different domains:
home domain, visited domain, and terminal domain. The Home Domain for a given
terminal is the domain that hosts the Home Location Agent of the terminal. A Visited
Domain is a domain that hosts one or more Access Bridges through which it provides
ORB access to some mobile terminals. The Terminal Domain consists of a terminal
device that hosts an ORB and a Terminal Bridge through which the objects on the
terminal can communicate with objects in other networks.

Figure 2-1 Architecture for Terminal Mobility in CORBA

Home domain

Visited domain

Access
Bridge

Access
Bridge

Access
Bridge

Access
Bridge

Terminal
Domain

Terminal
Bridge

Home
Location

Agent

GIOP
tunnel
2-2 CORBA Wireless Access & Terminal Mobility, v1.2 May 2005

Mobile IOR 3
Contents

This chapter contains the following sections.

A Mobile IOR is a special Interoperable Object Reference that hides the mobility of a
terminal from clients that invoke operations on target objects located on the terminal.
The Mobile IOR provides mobility transparency in a way that is itself transparent to
the ORB that a client runs on. Hence the ORB that a non-mobile client runs on is not
required to implement the Wireless Access and Terminal Mobility specification for
terminal mobility to be available.

A Mobile IOR contains the normal IIOP Profile (TAG_INTERNET_IOP) required in
an IOR, plus a ‘Mobile Terminal’ Profile (TAG_MOBILE_TERMINAL_IOP). There
may be more than one IIOP Profile in the Mobile IOR. There can be only one Mobile
Terminal Profile instance in the Mobile IOR.

3.1 IIOP Profiles in Mobile IOR
The ORB that a client runs on uses an IIOP Profile from the Mobile IOR (rather than
the Mobile Terminal Profile) to route the client’s invocations to the Access Bridge
currently serving the terminal on which the target object is located.

Section Title Page

“IIOP Profiles in Mobile IOR” 3-1

“The Mobile Terminal Profile” 3-2

“Translation to Mobile Target Object” 3-4

“Interoperability with GIOP 1.0 and 1.1” 3-4

“Additional Type Definitions” 3-5
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 3-1

3

The IIOP Profile or Profiles in a Mobile IOR have the normal structure defined in
IIOP::ProfileBody, but they have additional semantics regarding the address and
object key fields within that structure. These semantics are transparent to the client
ORB that makes use of one of these Profiles.

3.1.1 Address information in IIOP Profiles in Mobile IORs
Instead of indicating the address of the target object, the host and port information in
an IIOP Profile in a Mobile IOR indicate the address of either the target objects
terminal’s Home Location Agent or the Access Bridge that the terminal was last
known to be associated with. When a Mobile IOR is created at the terminal, the
terminal ORB chooses whether the address of the terminal’s HLA or the Access Bridge
the terminal is currently associated with is given in the IIOP Profile.

If the address in the IIOP Profile is that of the terminal’s Home Location Agent, rather
than its last known Access Bridge, when a client first performs an invocation upon the
Mobile IOR, the HLA replies with a GIOP LOCATION_FORWARD message
returning the Mobile IOR indicating the Access Bridge that the HLA believes the
terminal is currently associated with.

If the address in the IIOP Profile is that of an Access Bridge rather than an HLA, the
terminal may no longer be associated with that Access Bridge when a client makes its
first invocation upon the Mobile IOR. If the terminal is now associated with another
Access Bridge, the contacted Access Bridge should reply with a GIOP
LOCATION_FORWARD message returning the Mobile IOR indicating the Access
Bridge that the terminal is currently associated with.

Similarly, if at any time after a client has made its first invocation upon a Mobile IOR
the terminal becomes associated with another Access Bridge, then the contacted
Access Bridge should reply to the client’s next invocation with a GIOP
LOCATION_FORWARD message returning the Mobile IOR indicating the Access
Bridge that the terminal is now associated with.

3.1.2 Mobile Object Key Format
To allow clients to make invocations from ORBs that only support versions of GIOP
prior to version 1.2, Mobile IORs may optionally use a special format for the contents
of the object key field within their IIOP Profiles. For details of this format see
Section 3.4, “Interoperability with GIOP 1.0 and 1.1,” on page 3-4.

3.2 The Mobile Terminal Profile
The Mobile Terminal Profile within a Mobile IOR contains information that the Home
Location Agent and Access Bridges require to provide mobility transparency for target
objects that have Mobile IORs. The information is not required by the ORB that a
client of a Mobile IOR runs on, and hence only ORBs used to implement Home
Location Agents and Access Bridges need to be able to use this profile type.
3-2 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

3

3.2.1 Mobile Terminal Profile Structure
A Mobile Terminal profile is an IOP::TaggedProfile with a tag value of
TAG_MOBILE_TERMINAL_IOP and profile data with the structure defined by
MobileTerminal::ProfileBody.

const IOP::ProfileID TAG_MOBILE_TERMINAL_IOP = 4;

module MobileTerminal {

typedef sequence<octet> TerminalId;
typedef sequence<octet> TerminalObjectKey;

struct Version {
octet major;
octet minor;

};

struct ProfileBody {
Version mior_version; // version of Mobile IOR
octet reserved;
TerminalId terminal_id; // unique terminal identifier
TerminalObjectKey terminal_object_key;// object_key on terminal
sequence <IOP::TaggedComponent> components;

};

...

};

The MobileTerminal::ProfileBody structure identifies the version of the Mobile
Terminal Profile (in mior_version element) used, the id of the terminal the target
object resides on, and the object key of the target object on the terminal. It may
optionally include one or more tagged components. A
TAG_HOME_LOCATION_INFO component is specified, and may be present in the
Mobile Terminal Profile’s component list. See Section 3.2.2,
“TAG_HOME_LOCATION_INFO Component,” on page 3-3.

There can be only one Mobile Terminal profile instance in the Mobile IOR.

The version of the Mobile Terminal Profile defined in this specification is 1.0 (major 1,
minor 0).

3.2.2 TAG_HOME_LOCATION_INFO Component
The TAG_HOME_LOCATION_INFO component identifies the Home Location Agent
of the terminal on which the Mobile IOR was created. If the mobile terminal has a
Home Location Agent, then the TAG_HOME_LOCATION_INFO component must be
present in the Mobile Terminal Profile.
May 2005 CORBA Wireless Access & Terminal Mobility: The Mobile Terminal Profile 3-3

3

If the mobile terminal does not have a Home Location Agent, then the object reference
is only valid as long as the current GIOP tunnel between the Terminal Bridge and the
Access Bridge exists. Such a terminal is referred to as a “homeless terminal” in this
specification.

The TAG_HOME_LOCATION_INFO component has a Home Location Agent object
reference as its associated value, encoded as the CDR encapsulation of the data
structure MobileTerminal::HomeLocationInfo.

const IOP::ComponentID TAG_HOME_LOCATION_INFO = 44;

module MobileTerminal {

...

struct HomeLocationInfo {
HomeLocationAgent agent;

};

...
};

The TAG_HOME_LOCATION_INFO component can appear at most once in a
TAG_MOBILE_TERMINAL_IOP profile.

3.3 Translation to Mobile Target Object
The first time a Home Location Agent or Access Bridge receives a GIOP message for
an invocation on a particular Mobile IOR it needs some way to establish the terminal
id and object key of the mobile target object, and associate it with the object key
included in the GIOP message (so that in the future it will know that messages
containing that object key are intended for that same mobile target object).

In GIOP 1.2 the Home Location Agent or Access Bridge can reply to the first message
with the status NEEDS_ADDRESSING_MODE, to request the object reference of
the target object. It can then examine the contents of the Mobile Terminal profile
within that object reference to obtain the terminal id and object key. However, that
solution excludes clients running on an ORB using GIOP 1.0 or 1.1 from invoking on
the Mobile IOR, as the NEEDS_ADDRESSING_MODE status cannot be returned to
them by the HLA or Access Bridge.

3.4 Interoperability with GIOP 1.0 and 1.1
Since, in GIOP 1.0 and 1.1 the object key is the only available way of identifying the
target from data in a GIOP Request header, a special Mobile Object Key (MOK)
format is specified to allow invocations from GIOP 1.0 and 1.1 clients to be made on
mobile target objects. It is a structure that may optionally be used to format the
contents of the object key in the IIOP profile in the Mobile IOR.
3-4 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

3

When the MOK format is used, the contents of the object key is an encapsulation of
four octets with the ASCII values ‘M,’ ‘I,’ ‘O,’ ‘R’ followed by the structure
MobileTerminal::MobileObjectKey.

module MobileTerminal {
...
struct MobileObjectKey {

Version mior_version;
octet reserved;
TerminalId terminal_id;
TerminalObjectKey terminal_object_key;

};
};

Use of the MOK format is optional. Even when the MOK format is used, the Mobile
Terminal Profile is still included in the Mobile IOR, which means the terminal id and
target object information are included twice in the object reference. This redundancy is
allowed because the MOK solution is only offered to support legacy ORBs that do not
support GIOP 1.2. The GIOP 1.2 mechanism is preferred, and hence always supported
to assist the migration of systems to GIOP 1.2 support.

If the MOK format is used, the contents of the formatted key are only examined by the
Home Location Agent and Access Bridge, which will use ORBs that implement this
specification. The MOK is not examined by client ORBs, which continue to consider
the object key as an opaque piece of data. Hence non-mobile aware client ORBs are
able to interoperate with target objects, which have Mobile IORs that use the MOK
format.

3.5 Additional Type Definitions
The MobileTerminal module contains all the type definitions used in this
specification. They are provided below.

module MobileTerminal {

...

typedef sequence<octet>GIOPEncapsulation; // used in GIOP tunneling
typedef sequence<octet> GTPEncapsulation; // used in GTP forwarding

enum HandoffStatus {
HANDOFF_SUCCESS,
HANDOFF_FAILURE,
NO_MAKE_BEFORE_BREAK

}; // used to report status of handoff

struct GTPInfo {
Version gtp_version; // version of the GTP
octet protocol_level; // identifies GIOP Tunneling Protocol Level
octet protocol_id; // identifies GIOP Tunneling Protocol

}; // identifies the GIOP Tunneling Protocol
// values 0xE0...0xFF of protocol_id element arereserved for internal use
May 2005 CORBA Wireless Access & Terminal Mobility: Additional Type Definitions 3-5

3

const octetTCP_TUNNELING = 0;
const octet UDP_TUNNELING = 1;
const octet WAP_TUNNELING = 2;
const octet L2CAP_TUNNELING = 3;

struct AccessBridgeTransportAddress {
GTPInfo tunneling_protocol;
sequence<octet> transport_address;

}; // identifies transport access point of the Access Bridge

typedef sequence<AccessBridgeTransportAddress> AccessBridgeTransportAd-
dressList;

typedef string ObjectId; // same as CORBA::ORB::ObjectId
typedef sequence<ObjectId> ObjectIdList // same as CORBA::ORB::ObjectIdList

};
3-6 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

Home Location Agent 4
Contents

This chapter contains the following sections.

The Home Location Agent keeps track of the Access Bridge that a mobile terminal is
currently associated with. That is, which Access Bridge objects on the terminal can
currently be invoked. It provides operations to update and to query the current
location. It also provides operations to resolve initial references in the Home Domain.

4.1 Location Update
The HomeLocationAgent interface provides operations for Access Bridges to carry
out location updates and to query the current location of a terminal. The terminal is
identified by a terminal identifier, terminal_id. The Home Location Agent may
require the use of the CORBA Security Service to invoke the update_location,
deregister_terminal, and query_location operations.

module MobileTerminal {

interface HomeLocationAgent {

void update_location (

Section Title Page

“Location Update” 4-1

“Discovery” 4-4

“Message Processing” 4-4

“Terminal Ids” 4-5
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 4-1

4

in TerminalId terminal_id,
in AccessBridge new_access_bridge

) raises (UnknownTerminalId, IllegalTargetBridge);

...
};

};

Parameters

Exceptions

module MobileTerminal {

interface HomeLocationAgent {

...

boolean deregister_terminal (
in TerminalId terminal_id,
in AccessBridge old_access_bridge

) raises (UnknownTerminalId);

...
};

};

terminal_id Terminal for which the location update is done.

new_access_bridge Object reference of the Access Bridge that wants to
serve the terminal.

UnknownTerminalId The HLA raises this exception if it is not the HLA
serving the terminal identified by the terminal_id.

IllegalTargetBridge The HLA raises this exception if it does not accept the
Access Bridge identified by new_access_bridge to
serve the terminal identified by terminal_id.
4-2 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

4

Return values

Parameters

Exceptions

When an Access Bridge has lost the terminal, it deregisters the location of the terminal
by invoking deregister_terminal(terminal_id, access_bridge_reference) at the
Home Location Agent.

If deregister_terminal operation returns false, the Access Bridge should keep the
state information of the terminal since most probably the access recovery process is
going on.

If an Access Bridge needs to query the current location of a terminal, that is the Access
Bridge currently serving the terminal, it can invoke the query_location operation at
the Home Location Agent of the terminal. The Home Location Agent may require the
use of the CORBA Security Service to invoke the query_location operation.

module MobileTerminal {

interface HomeLocationAgent {

...

void query_location (
in TerminalId terminal_id,
out AccessBridge current_access_bridge

) raises (UnknownTerminalId, UnknownTerminalLocation);

...

};
};

true Implies that the HLA believes that
old_access_bridge manages the terminal.

false Implies that the HLA has already received an
update_location operation from another Access
Bridge.

terminal_id Terminal that has disappeared.

old_access_bridge Object reference of the Access Bridge that has lost the
terminal.

UnknownTerminalId The HLA raises this exception, if it is not the HLA
serving the terminal identified by the terminal_id.
May 2005 CORBA Wireless Access & Terminal Mobility: Location Update 4-3

4

Parameters

Exceptions

4.2 Discovery
The Home Location Agent provides discovery operations so that the terminals can
resolve initial references to CORBA services available in the Home Domain. The
operations are list_initial_services and resolve_initial_references. They are the
same as provided by the ORB pseudo interface for local applications.

module MobileTerminal {

interface HomeLocationAgent {

...

ObjectIdList list_initial_services();
Object resolve_initial_references(

in ObjectId identifier
) raises(InvalidName);

};

};

4.3 Message Processing
When the Home Location Agent receives a GIOP message targeted to a terminal, its
behavior depends on whether or not it currently has an Access Bridge associated with
that terminal. If it does, it replies with the LOCATION_FORWARD status and returns

terminal_id Identifies the terminal the location of which is
queried.

current_access_bridge Object reference of the Access Bridge to which
the HLA believes that the terminal is currently
attached.

UnknownTerminalId The HLA raises this exception if it is not the
HLA serving the terminal identified by the
terminal_id.

UnknownTerminalLocation The HLA raises this exception if the given
terminal has not registered its current location
through an Access Bridge, or the paging
procedure did not find the Access Bridge to
which the terminal is attached.
4-4 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

4

the Mobile IOR identifying the current Access Bridge. If not, it replies with the system
exception OBJECT_NOT_EXIST (to a Request) or with the UNKNOWN_OBJECT
status (to a Locate Request).

4.4 Terminal Ids
The TerminalIds need to be unique world-wide.

One possible scheme that may be used to achieve this is to concatenate the following
information to produce each identifier:

• IP version (1 byte),

• IP address (4 or 16 bytes), and

• local_id (variable number of bytes).

The IP address can be any IP address that is owned by the organization that is
generating the TerminalId, and the local_id is a unique identifier within that
organization.

Any other scheme may be used as long as it produces globally unique identifiers.
May 2005 CORBA Wireless Access & Terminal Mobility: Terminal Ids 4-5

4

4-6 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

Access Bridge 5
Contents

This chapter contains the following sections.

The Access Bridge encapsulates/decapsulates the GIOP messages to/from the Terminal
Bridge using a GIOP Tunneling Protocol. It also provides operations to get a list of
initial services and to resolve initial references in the visited domain. In addition, the
Access Bridge may support handoff. The Access Bridge may also provide notifications
related to movements of terminals.

GIOP Tunneling Protocol is described in Chapter 7. The handoff procedures are
described in Chapter 8.

5.1 Discovery
The Access Bridge provides discovery operations so that the terminals can resolve
initial references to CORBA services available in the Visited Domain. The operations
are list_initial_services and resolve_initial_references. They are the same as
provided by the ORB pseudo interface for local applications.

Section Title Page

“Discovery” 5-1

“Query” 5-2

“Message Processing” 5-2

“Mobility Event Notifications” 5-3
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 5-1

5

module MobileTerminal {

interface AccessBridge {
ObjectIdList list_initial_services();
Object resolve_initial_references(

in ObjectId identifier
) raises(InvalidName);

...

};
};

5.2 Query
The Access Bridge also provides query operations that can be used to query whether or
not a specific terminal is attached to the bridge, and the address information for the
Access Bridge.

module MobileTerminal {

interface AccessBridge {

...

Boolean terminal_attached (
in TerminalId terminal_id

);

void get_address_info (
out AccessBridgeTransportAddessList transport_address_list

);

...

};
};

If the HLA requires the CORBA Security Service to be used in location update, then
the Access Bridge must use the CORBA Security Service to protect the usage of the
terminal_attached operation. The Access Bridge may also use the CORBA Security
Service to protect the get_address_info operation.

5.3 Message Processing
The Access Bridge acts as a relay between the server and client. It maintains bindings
between terminal_id and the transport address of the GIOP tunnel to the terminal. For
each terminal the Access Bridge keeps a state of outstanding invocations. An
outstanding invocation is a GIOP message to which a reply is expected.
5-2 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

5

When the bridge gets a message targeted to a terminal, it encapsulates the message to
the GIOP tunneling protocol in use and sends it to the GIOP tunnel address associated
with the terminal_id.

If the Access Bridge does not have a tunneling association with the terminal, then it
can query the current location of the terminal from the HLA or it can replace the IOR
so that the HLA is in the IIOP Profile. In both cases the Access Bridge must reply with
the LOCATION_FORWARD status.

If the IOR does not have TAG_HOME_LOCATION_INFO component or the Access
Bridge does not know the HLA of the terminal, then the Access Bridge must reply
with the system exception OBJECT_NOT_EXIST to a Request and with the
UNKNOWN_OBJECT status to a Locate Request.

If the Access Bridge gets a reply, the target of which is on a terminal that has moved
to a new Access Bridge, it can use the forwarding mechanism described in Chapter 8. If
the Access Bridge does not support handoff, then it should silently discard the Reply
message.

When the Access Bridge gets an encapsulated GIOP message from a terminal, it
decapsulates the message and forwards it to the target.

5.4 Mobility Event Notifications
The Access Bridge may, optionally, raise terminal mobility related events through a
Notification Service Event Channel. The following Event types are defined so that if
the Access Bridge does this, it may use standard events:

module MobileTerminalNotification {

struct HandoffDepartureEvent {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::AccessBridge new_access_bridge;

};

struct HandoffArrivalEvent {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::AccessBridge old_access_bridge;

};

struct AccessDropoutEvent {
MobileTerminal::TerminalId terminal_id;

};

struct AccessRecoveryEvent {
MobileTerminal::TerminalId terminal_id;

};

...

};
May 2005 CORBA Wireless Access & Terminal Mobility: Mobility Event Notifications 5-3

5

When a terminal moves from an old Access Bridge to a new Access Bridge, the old
Access Bridge supplies the HandoffDepartureEvent and the new Access Bridge
supplies the HandoffArrivalEvent.

When a terminal establishes the GIOP tunnel to the Access Bridge for the first time,
then Handoff, then the new Access Bridge supplies the HandoffArrivalEvent with
NIL as reference to the old Access Bridge. When a terminal closes the GIOP tunnel to
the Access Bridge, then the Access Bridge supplies the HandoffDepartureEvent
with NIL as reference to the new Access Bridge.

When an Access Bridge detects that transport connectivity to a terminal has dropped, it
supplies the AccessDropoutEvent. If the terminal re-establishes the GIOP Tunnel to
the same Access Bridge, then the Access Bridge supplies the
AccessRecoveryEvent if it has supplied the AccessDropoutEvent. If the
terminal re-establishes the GIOP Tunnel to a new Access Bridge, then the old Access
Bridge supplies the HandoffDepartureEvent and the new Access Bridge supplies
the HandoffArrivalEvent.
5-4 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

Terminal Bridge 6
Contents

This chapter contains the following sections.

The Terminal Bridge encapsulates/decapsulates the GIOP messages to/from the Access
Bridge using a GIOP Tunneling Protocol. The Terminal Bridge may support handoff.
As an optional feature, the Terminal Bridge may also provide notifications of mobility
related events for mobility-aware applications on the mobile terminal.

GIOP Tunneling Protocol and handoff procedures are described in Chapters 7 and 8,
respectively.

6.1 Mobility Event Notifications
The Terminal Bridge may, optionally, raise terminal mobility related events through a
Notification Service Event Channel. The following Event types are defined so that if
the Terminal Bridge does this, it may use standard events.

module TerminalMobilityNotification {

...

struct TerminalHandoffEvent {
MobileTerminal::AccessBridge new_access_bridge;

};

struct TerminalDropoutEvent {

Section Title Page

“Mobility Event Notifications” 6-1
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 6-1

6

MobileTerminal::TerminalId terminal_id;
};

struct TerminalRecoveryEvent {
MobileTerminal::TerminalId terminal_id;

};
};

When the Terminal Bridge detects that it has lost transport connectivity to the Access
Bridge, it supplies the TerminalDropoutEvent. When the GIOP Tunnel has been re-
established, then the Terminal Bridge generates the TerminalRecoveryEvent if the
Access Bridge is the same as before. If the Access Bridge is different, then the
Terminal Bridge supplies the TerminalHandoffEvent.

When a handoff takes place, the Terminal Bridge supplies the
TerminalHandoffEvent. The Terminal Bridge also supplies the
TerminalHandoffEvent, when the Terminal establishes the GIOP Tunnel to an
Access Bridge for the first time. When the Terminal Bridge closes the GIOP Tunnel,
then it supplies the TerminalHandoffEvent with NIL as the new_access_bridge.
6-2 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

GIOP Tunneling 7
Contents

This chapter contains the following sections.

A GIOP tunnel is the means to transmit GIOP and tunnel control messages between a
Terminal Bridge and an Access Bridge. There is only one GIOP tunnel between a
given Terminal Bridge and Access Bridge. However, a graceful handoff behavior is
defined so that the Terminal Bridge can seamlessly transfer the GIOP Tunnel from the
current Access Bridge to a new one. If the terminal can have simultaneous transport
connectivity to two Access Bridges, then the Terminal Bridge creates a new tunnel to a
new Access Bridge before shutting down the tunnel to the previous Access Bridge.

A tunnel is shared by all GIOP connections to and from the terminal it is associated
with. The tunneling protocol allows multiplexing between the GIOP connections.

The GIOP Tunneling Protocol (GTP) is an abstract, transport-independent protocol. It
defines message formats for establishing, releasing, and re-establishing (recovery) the
tunnel as well as for transmitting and forwarding GIOP messages. The GTP protocol
also defines messages for establishing and releasing GIOP connections through the
Access Bridge. Figure 7-1 depicts the protocol architecture.

Section Title Page

“Tunnel Establishment” 7-2

“GIOP Tunneling Protocol” 7-2

“TCP Tunneling” 7-20

“UDP Tunneling” 7-20

“WAP Tunneling” 7-26
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 7-1

7

Figure 7-1 GIOP Tunneling Protocol Architecture

Since the GIOP Tunneling Protocol is an abstract protocol, it needs to be mapped onto
one or more concrete protocols. This specification defines four concrete tunneling
protocols: TCP Tunneling, UDP Tunneling, WAP Tunneling, and Bluetooth Tunneling.

The GTP is designed so that the specification of a concrete tunneling protocol is
simple. The specification of a concrete tunneling protocol is provided as an adaption
layer between the GIOP Tunneling Protocol and a transport layer protocol. The
adaptation layer needs only to define how the transport is to be used and the data
format of the transport address of the transport end-point.

7.1 Tunnel Establishment
GIOP tunnel establishment consists of two phases: 1) Transport end-point detection,
and 2) Establishment of the GIOP tunnel. Transport end-point detection is discussed
below. The establishment of the GIOP tunnel is specified in Section 7.2, “GIOP
Tunneling Protocol,” on page 7-2.

7.1.1 Transport End-Point Detection
The detection of transport end-points on the link, network, and transport layers. It also
depends on the provider of the Access Bridge. Therefore, transport end-point detection
is out of the scope of this specification.

7.2 GIOP Tunneling Protocol
The GIOP Tunneling Protocol (GTP) assumes that the underlying concrete tunneling
protocol (that is, the adaption layer between the GTP and a transport protocol) provides
the same reliability and ordered delivery of messages assumed by the GIOP. If the
underlying transport protocol does not provide this level of service, then the adaption
layer that resides between the GTP and the actual transport protocol will provide this
level of service.

Terminal ORB Access Bridge ORB peer ORB

GIOP GIOP
GIOP messages

TCPTCP TCP byte stream

IIOPIIOP
IIOP messages

GIOP GIOP
GIOP messages

GIOP GIOP
GIOP messages

TCPTCP TCP byte stream

IIOPIIOP
IIOP messages

GTP adaptation layer GTP adaptation layer
transport transport

GTP GTPGTP
msgs

GTP adaptation layer GTP adaptation layer
transport transport

GTP GTPGTP
msgs

Object
CORBA invocations

ObjectObject
CORBA invocations

Object
7-2 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

The version of the GIOP Tunneling Protocol defined in this specification is 1.0 (major
1, minor 0).

All timeout values are in seconds.

7.2.1 GTP Message Structure
All GTP messages contain a header of eight octets and contents of variable (possibly
null) length.

The GTP header has the following structure.

struct GTPHeader {
octet gtp_msg_type;
octet flags;
unsigned short seq_no;
unsigned short last_seq_no_received;
unsigned short content_length;

};

The gtp_msg_type element indicates the GIOP Tunneling Protocol message type. It
defines how the receiver should interpret the body of the GTP message.

The flags element indicates the Endianness used in the GTP header and in GTP control
messages. The leftmost bit tells the Endianness: 0x00 Big-Endian and 0x80 Little-
Endian. The remaining seven bits are reserved for future usage.

The seq_no element runs from 1 (0x0001) to 65535 (0xFFFF). The value 0x0000 can
only appear in tunnel establishment request messages and an associated reply. The
sequence number counting follows the usual modulo arithmetic with the exception that
the seq_no 0x0001 follows the seq_no 0xFFFF.

The last_seq_no_received element indicates the highest sequence number of GTP
messages received or, in certain cases, processed by the sender.

The content_length element (unsigned short) tells the length of the GTP message.

7.2.2 GTP Messages
The GTP Messages are listed in the table below. Descriptions of the messages are
given in the subsections that follow.

Table 7-1 GTP Messages

Message name gtp_msg_type GTP Level

IdleSync 0x00 1, 2

EstablishTunnelRequest 0x01 1, 2

EstablishTunnelReply 0x02 1, 2
May 2005 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-3

7

7.2.3 IdleSync Message
The IdleSync message does not have a message body.

Source
Terminal Bridge and Access Bridge

Description
It is used by the Terminal Bridge and the Access Bridge to acknowledge GTP messages
after some implementation dependent timeout. This allows the other side of the tunnel
to release sent messages in a timely fashion, during a period when no messages are
being sent in the opposite direction. If messages are being sent in the opposite
direction, there is no need to send this message as the synchronization occurs through
the gtp_header.last_seq_no_received element of each sent message.

Special Notes
None

ReleaseTunnelRequest 0x03 1, 2

ReleaseTunnelReply 0x04 1, 2

HandoffTunnelRequest 0x05 2

HandoffTunnelReplyCompleted 0x06 2

OpenConnectionRequest 0x07 1, 2

OpenConnectionReply 0x08 1, 2

CloseConnectionRequest 0x09 1, 2

CloseConnectionReply 0x0A 1, 2

ConnectionCloseIndication 0x0B 1, 2

GIOPData 0x0C 1, 2

GIOPDataError 0x0D 1, 2

GTPForward 0x0E 2

GTPForwardReply 0x0F 2

Error 0xFF 1, 2

Table 7-1 GTP Messages

Message name gtp_msg_type GTP Level
7-4 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

Forwardable
Yes - this GTP message can be encapsulated and sent in the GTPForward message.
This will be used by either the Terminal Bridge or an old Access Bridge to
acknowledge replies to forwarded GTP messages.

7.2.4 EstablishTunnelRequest Message
The EstablishTunnelRequest message has a message body containing the CDR
encoded value of:

union EstablishTunnelRequestBody switch (RequestType) {
case INITIAL_REQUEST: InitialRequestBody initial_request_body;
case RECOVERY_REQUEST: RecoveryRequestBody recovery_request_body;
case NETWORK_REQUEST: NetworkRequestBody network_request_body;
case TERMINAL_REQUEST: TerminalRequestBody terminal_request_body;

};

with the following definitions:

typedef short RequestType;
const short INITIAL_REQUEST = 0;
const short RECOVERY_REQUEST = 1;
const short NETWORK_REQUEST = 2;
const short TERMINAL_REQUEST = 3;

struct InitialRequestBody {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::HomeLocationAgent home_location_agent_reference;
unsigned long time_to_live_request;

};

struct RecoveryRequestBody {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::HomeLocationAgent home_location_agent_reference;
struct LastAccessBridgeInfo {

MobileTerminal::AccessBridge access_bridge_reference;
unsigned long time_to_live_request;
unsigned short last_seqno_received;

} last_access_bridge_info;
unsigned long time_to_live_request;

};

typedef RecoveryRequestBody NetworkRequestBody;
typedef RecoveryRequestBody TerminalRequestBody;

Source
Terminal Bridge
May 2005 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-5

7

Description
This message is sent by the Terminal Bridge to establish or re-establish a tunnel with
an Access Bridge. The INITIAL_REQUEST denotes that a new tunnel is requested. In
tunnel re-establishment the new Access Bridge needs to know which re-establishment
procedure to use:

• Access Recovery (see Section 8.4, “Access Recovery,” on page 8-10):
RECOVERY_REQUEST.

• Network Initiated Handoff (see Section 8.2, “Network Initiated Handoff,” on
page 8-3): NETWORK_REQUEST.

• Terminal Initiated Recovery (see Section 8.3, “Terminal Initiated Handoff,” on
page 8-8): TERMINAL_REQUEST.

The terminal_id and home_location_agent_reference will be used by the Access
Bridge to accept or deny the request and to make the location update at the Home
Location Agent of the terminal.

The time_to_live_request element is used to indicate the terminal’s desired life
expectancy (in seconds) of this tunnel association should it be dropped.

Special Note
The gtp_header.seq_no and gtp_header.last_seq_no_received elements are
always set to zero in this message.

Special Note
With regard to the various time_to_live parameters in all GTP messages, if the
parameter is set to 0, then if sent by the terminal this indicates that the Access Bridge
does not need to maintain any state or forward messages for a disconnected terminal. If
sent by an Access Bridge, then the Access Bridge is indicating that it will not maintain
any state and will not forward any messages for this terminal. In other words, the
handoff will not be supported for this terminal.

Forwardable
No - this message cannot be encapsulated and sent via a GTPForward message.

7.2.5 EstablishTunnelReply Message
The EstablishTunnelReply message has a message body containing the CDR
encoded value of:

union EstablishTunnelReplyBody switch (ReplyType) {
case INITIAL_REPLY: InitialReplyBody initial_reply_body;
case RECOVERY_REPLY: RecoveryReplyBody recovery_reply_body;
case NETWORK_REPLY: NetworkReplyBody network_reply_body;
case TERMINAL_REPLY: TerminalReplyBody terminal_reply_body;

};

with the following definitions:
7-6 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

typedef short ReplyType;
const short INITIAL_REPLY = 0;
const short RECOVERY_REPLY = 1;
const short NETWORK_REPLY = 2;
const short TERMINAL_REPLY = 3;

enum AccessStatus {
ACCESS_ACCEPT,
ACCESS_ACCEPT_RECOVERY,
ACCESS_ACCEPT_HANDOFF,
ACCESS_ACCEPT_LOCAL,
ACCESS_REJECT_LOCATION_UPDATE_FAILURE,
ACCESS_REJECT_ACCESS_DENIED,
ACCESS_REJECT_RECOVERY_FAILURE

};

struct InitialReplyBody {
AccessStatus status;
MobileTerminal::AccessBridge access_bridge_reference;
unsigned long time_to_live_reply;

};

struct RecoveryReplyBody {
AccessStatus status;
MobileTerminal::AccessBridge access_bridge_reference;
struct OldAccessBridgeInfo {

unsigned long time_to_live_reply;
unsigned short last_seqno_received;

} old_access_bridge_info;
unsigned long time_to_live_reply;

};

typedef RecoveryReplyBody NetworkReplyBody;
typedef RecoveryReplyBody TerminalReplyBody;

Source
Access Bridge

Description
This message is sent by the Access Bridge in response to an
EstablishTunnelRequest message. The status element has the following possible
values:

• ACCESS_ACCEPT: in InitialReplyBody, indicates the successful establishment
of a new tunnel; not used in RecoveryReplyBody.

• ACCESS_ACCEPT_RECOVERY: in RecoveryReplyBody it indicates the
successful re-establishment of an old tunnel to the old Access Bridge; not used in
InitialReplyBody.

• ACCESS_ACCEPT_HANDOFF: in RecoveryReplyBody it indicates the
successful re-establishment of an old tunnel to a new Access Bridge; not used in
InitialReplyBody.
May 2005 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-7

7

• ACCESS_ACCEPT_LOCAL: in InitialReplyBody, indicates acceptance of
access without location update at HLA (so called homeless terminal).

• ACCESS_REJECT_LOCATION_UPDATE_FAILURE: The location update at
the Home Location Agent failed and the Access Bridge does not support homeless
terminals.

• ACCESS_REJECT_ACCESS_DENIED: Access was denied by the Access
Bridge. Generic reason. May be sent if a connection bridge is out of resources and
cannot accept any more Tunnels.

• ACCESS_REJECT_RECOVERY_FAILURE: The Access Bridge did not get the
information needed in the recovery from the old Access Bridge.

The ACCESS_ACCEPT_RECOVERY status indicates that the tunnel was
established to the same Access Bridge as the last time a tunnel was established for this
terminal. The Access Bridge will immediately set its next GTP header
gtp_header.seq_no to the next to the value of the
last_access_bridge_info.last_seqno_received element obtained in the
EstablishTunnelRequest message, and will re-send any GTP messages lost when
the tunnel was dropped. Likewise, the Terminal must immediately set its next GTP
header gtp_header.seq_no to the next to the value of the
old_access_bridge_info.last_seqno_received element of the
RecoveryReplyBody, and will re-send any GTP messages lost when the tunnel was
dropped.

If the tunnel was established to a new Access Bridge, then the Terminal Bridge should
use the old_access_bridge_info.last_seqno_received element to indicate if any
GTP messages sent by the terminal were lost by the old Access Bridge during a non-
graceful handoff, and re-send them via GTPForward messages.

The time_to_live_reply element (not the
old_access_bridge_info.time_to_live_reply element) is used to indicate the
Access Bridge’s agreed to life expectancy of this tunnel association, and will be less
than or equal to the terminal’s requested time to live.

Special Note
The gtp_header.seq_no and gtp_header.last_seq_no_received elements are
always set to zero in this message.

Forwardable
No

7.2.6 ReleaseTunnelRequest Message
The ReleaseTunnelRequest message has a message body containing the CDR
encoded value of:
7-8 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

struct ReleaseTunnelRequestBody {
unsigned long time_to_live;

};

Source
Terminal Bridge and Access Bridge

Description
This message may be sent by either the Terminal Bridge or the Access Bridge to
gracefully tear down a tunnel. If sent by the Terminal Bridge, the time_to_live
represents the time it desires the Access Bridge to maintain connections and forward
outstanding GIOP messages for this terminal. If sent by the Access Bridge, then this
time_to_live parameter represents the time it is willing to continue to forward GIOP
messages for this terminal.

The sender of this message will send no more GTP messages directly on this tunnel,
and will wait until it receives the reply before releasing the transport connectivity. The
sender of this message will initiate the tear down of the transport connectivity after
receipt of the reply.

Special Notes
None

Forwardable
No

7.2.7 ReleaseTunnelReply Message
The ReleaseTunnelRequest message has a message body containing the CDR
encoded value of:

struct ReleaseTunnelReplyBody {
unsigned long time_to_live;

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to
acknowledge the graceful tear down of a tunnel. The time_to_live sent in this
message must be less than or equal to the time_to_live sent in the
ReleaseTunnelRequest message. If sent by the terminal, the time_to_live
parameter represents the time it desires the Access Bridge to maintain connections and
May 2005 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-9

7

forward outstanding GIOP messages for this terminal. If sent by the Access Bridge,
then this time_to_live parameter represents the time it is willing to continue to
forward GIOP messages for this terminal.

The sender of this message will send no more GTP messages directly on this tunnel.

Upon sending or receiving this message, each end of the tunnel (Terminal and Access
Bridge) may begin silently tearing down GIOP connections upon which there are no
outstanding GIOP request messages.

The tunnel association for this terminal will be set to inactive_forwarding if the
negotiated time_to_live is non-zero, and set to disconnected (and/or deleted) if
time_to_live was negotiated to zero.

Special Notes
None

Forwardable
No

7.2.8 HandoffTunnelRequest Message
The HandoffTunnelRequest message has a message body containing the CDR
encoded value of:

struct HandoffTunnelRequestBody {
MobileTerminal::AccessBridgeTransportAddressList

new_access_bridge_transport_address_list;
};

Source
Access Bridge

Description
This message is sent by the Access Bridge to the Terminal Bridge in the network
initiated handoff described in Section 8.2, “Network Initiated Handoff,” on page 8-3.

The Terminal Bridge will use the new_access_bridge_transport_address_list to
attempt to establish a tunnel to a new Access Bridge.

The sender of this message will send no more GTP messages directly on this tunnel
until it receives a HandoffTunnelReply message or times out after some
implementation specific timeout waiting for the Terminal to establish a new Access
Bridge. If it times out, then the Access Bridge may send a ReleaseTunnelRequest
message to begin gracefully tearing down the tunnel. It will however continue to
accept GTP messages sent by the Terminal Bridge and will hold them to either discard
or process dependent upon the success or failure of the handoff.
7-10 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

The tunnel association for this terminal will be set to handoff_in_progress until
receipt of a HandoffTunnelReply message.

Special Notes
None

Forwardable
No

7.2.9 HandoffTunnelReply Message
The HandoffTunnelReply message has a message body containing the CDR encoded
value of:

struct HandoffTunnelReplyBody {
MobileTerminal::HandoffStatus status;

};

Source
Terminal Bridge

Description
This message is sent by the Terminal Bridge in response to HandoffTunnelRequest
message.

If the Terminal Bridge successfully established a new AccessBridge, then status is
set to HANDOFF_SUCCESS. The Terminal Bridge sends a
ReleaseTunnelRequest message to the Access Bridge and waits for
ReleaseTunnelReply message from the Access Bridge.

If the terminal does not support “make-before-break,” then the Terminal Bridge should
not try to establish connectivity to a new Access Bridge but to send a
HandoffTunnelReply with status set to NO_MAKE_BEFORE_BREAK. The
Terminal Bridge sends a ReleaseTunnelRequest message to the Access Bridge and
waits for a ReleaseTunnelReply message from the Access Bridge. After that the
Terminal Bridge establishes a tunnel to a new Access Bridge (see Section 8.2.5,
“Alternative Handoff Procedure,” on page 8-6).

If the terminal could not establish a tunnel to a new Access Bridge, then it will return
a HANDOFF_FAILURE status in this message. The tunnel will then remain open and
active until released by either endpoint via the ReleaseTunnelRequest /
ReleaseTunnelReply sequence.

Special Notes
None
May 2005 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-11

7

Forwardable
No

7.2.10 OpenConnectionRequest Message
The OpenConnectionRequest message has a message body containing the CDR
encoded value of:

struct OpenConnectionRequestBody {
GIOP::TargetAddress target_object_reference;
unsigned long open_connection_request_id;
unsigned long timeout;

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to allocate a
connection on the remote end of the tunnel. To avoid allocation conflicts, Access
Bridge uses even numbers and Terminal Bridge uses odd numbers (but not
0xFFFFFFFF, which is reserved as an error indicator; see Section 7.2.11,
“OpenConnectionReply Message,” on page 7-12). The
open_connection_request_id will be returned in the OpenConnectionReply
message. This handle is used so that the target_object_reference does not need to
be returned in the OpenConnectionReply message.

The target_object_reference will be used by the receiver to connect to the target
object.

The timeout is sent as an indication to the receiver of the sender’s desired connection
timeout. The receiver should return an error if this connection cannot be established
within this period. Note that this timeout is by definition approximate because it does
not take into account the transmission time of the request message.

Special Notes
None

Forwardable
No - new connections should be made through the current Access Bridge.

7.2.11 OpenConnectionReply Message
The OpenConnectionReply message has a message body containing the CDR
encoded value of:
7-12 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

struct OpenConnectionReplyBody {
unsigned long open_connection_request_id;
OpenConnectionStatus status;
unsigned long connection_id; // 0xFFFFFFFF indicates failure

};

enum OpenConnectionStatus {
OPEN_SUCCESS,
OPEN_FAILED_UNREACHABLE_TARGET,
OPEN_FAILED_OUT_OUT_RESOURCES,
OPEN_FAILED_TIMEOUT,
OPEN_FAILED_UNKNOWN_REASON

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge in response to
an OpenConnectionRequest message. The open_connection_request_id
element is the same as that passed in the OpenConnectionRequest message for
which this is a reply. If a connection was established, the connection_id (allocated
by the receiver of the OpenConnectionRequest message) is returned, and status is
set to OPEN_SUCCESS. To avoid allocation conflicts, Access Bridges use even
numbers and Terminal Bridges use odd numbers (but not 0xFFFFFFFF, which is
reserved as an error indicator; see next paragraph).

If the connection could not be established within the requested time period, then the
connection_id is set to 0xFFFFFFFF and the status element is used to relay the
failure reason.

Special Notes
None

Forwardable
Yes - this is due to the fact that outstanding OpenConnectionRequests may have
been in progress during a transition to a new Access Bridge. However, if the new
connection has no outstanding messages on it, then it should be closed and a
connection_id = 0xFFFFFFFF returned in this forwarded message with status =
OPEN_FAILED_TIMEOUT.

7.2.12 CloseConnectionRequest Message
The OpenConnectionRequest message has a message body containing the CDR
encoded value of:
May 2005 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-13

7

struct CloseConnectionRequestBody {
unsigned long connection_id; // 0xFFFFFFFF denotes all connections

for sender
};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to close a
currently open connection. If the connection_id is set to 0xFFFFFFFF, then all
connections associated with this Tunnel should be closed.

Special Notes
None

Forwardable
Yes - this will be used by either the Terminal Bridge or an old Access Bridge to
gracefully shut down open GIOP connections after a terminal has moved to a new
Access Bridge.

7.2.13 CloseConnectionReply Message
The CloseConnectionReply message has a message body containing the CDR
encoded value of:

struct CloseConnectionReplyBody {
unsigned long connection_id; // same as in request
CloseConnectionStatus status;

};

enum CloseConnectionStatus {
CLOSE_SUCCESS,
CLOSE_FAILED_INVALID_CONNECTION_ID,
CLOSE_FAILED_UNKNOWN_REASON

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge in response to
a CloseConnectionRequest message. The connection_id element is the same as
is sent in the CloseConnectionRequest message for which this is a reply.
7-14 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

Special Notes
None

Forwardable
Yes - this will be used by either the Terminal or an old Access Bridge, to gracefully
shut down open connections after a terminal has moved to a new Access Bridge.

7.2.14 ConnectionCloseIndication Message
The ConnectionCloseIndication message has a message body containing the CDR
encoded value of:

struct ConnectionCloseIndicationBody {
unsigned long connection_id; // 0xFFFFFFFF means all connection for recipient
ConnectionCloseReason reason;

};

enum ConnectionCloseReason {
CLOSE_REASON_REMOTE_END_CLOSE,
CLOSE_REASON_RESOURCE_CONSTRAINT,
CLOSE_REASON_IDLE_CLOSED,
CLOSE_REASON_TIME_TO_LIVE_EXPIRED,
CLOSE_REASON_UNKNOWN_REASON

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to alert the
other end of the tunnel that a connection was asynchronously closed, (not in response
to a CloseConnectionRequest message).

If all open connections for this tunnel association were closed, then the
connection_id element will be set to 0xFFFFFFFF.

The reason element is used to indicate the reason for the connection closure. The
element field has the following meanings:

• CLOSE_REASON_REMOTE_END_CLOSE: The remote end of the GIOP
connection closed the connection.

• CLOSE_REASON_RESOURCE_CONSTRAINT: The sender closed this
connection because of a resource constraint.

• CLOSE_REASON_IDLE_CLOSED: The sender closed the connection after an
implementation dependent timeout and after all outstanding GIOP requests had
been completed and the connection could be safely closed.
May 2005 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-15

7

• CLOSE_REASON_TIME_TO_LIVE_EXPIRED: The time_to_live for this
terminal who had moved expired.

The receiver of this message should mark the indicated connections as deleted in its
local data structures. If a ConnectionCloseIndication message is received for a
connection_id not valid on the receiver (probably because the receiver had already
deleted it locally), then the message will be silently discarded.

Special Notes
None

Forwardable
Yes - this will be used by either the Terminal Bridge or an old Access Bridge to
indicate asynchronous connection closures after a terminal has moved to a new Access
Bridge. This is used to indicate that the time_to_live has expired with the reason set
to CLOSE_REASON_TIME_TO_LIVE_EXPIRED. It is also sent with the reason set
to CLOSE_REASON_IDLE_CLOSED if all outstanding GIOP requests have been
completed and the connection was safely closable.

7.2.15 GIOPData Message
The GIOPData message has a message body containing the CDR encoded value of:

struct GIOPDataBody {
unsigned long connection_id;
unsigned long giop_message_id;
MobileTerminal::GIOPEncapsulation giop_message;

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge and contains
an encapsulated GIOP message. The giop_message_id element is assigned by the
sending bridge. It is used by the receiving bridge in GIOPDataError message to
indicate unsuccessful delivery of a GIOP message. The connection_id is the
receiver’s connection on which this message is to be sent.

Special Notes
If the delivery of the encapsulated GIOP message is successful, this success is not
indicated explicitly to the sender of the GIOPData message. Instead, successful
delivery is implicitly indicated by normal acknowledgment of the GTP sequence
number of the GIOPData message.
7-16 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

Forwardable
Yes - this will be used by either the Terminal Bridge or an old Access Bridge to
forward GIOP messages.

7.2.16 GIOPDataError Message
The GIOPDataError message has a message body containing the CDR encoded value
of:

struct GIOPDataErrorBody {
unsigned long giop_message_id;
DeliveryStatus status;

};

enum DeliveryStatus {
DELIVERY_FAILED_INVALID_CONNECTION_ID,
DELIVERY_FAILED_UNKNOWN_REASON

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to indicate
unsuccessful delivery of a GIOP message. The status element is set to the appropriate
failure code.

Special Notes
None

Forwardable
Yes - this will be used by either the Terminal Bridge or an old Access Bridge to
forward indications of unsuccessful delivery of a GIOP message.

7.2.17 GTPForward Message
The GTPForward message has a message body containing the CDR encoded value of:

struct GTPForwardBody {
MobileTerminal::AccessBridge access_bridge_reference;

// source if sent by Access Bridge, destination if sent by Terminal Bridge
unsigned long gtp_message_id;
MobileTerminal::GTPEncapsulation gtp_message;

// including GTP header
};
May 2005 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-17

7

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to forward
messages to/from an old Access Bridge. The gtp_message_id is allocated by the
receiver so that it can identify the GTP message in the GTPForwardReply message.
This handle is used so that the access_bridge_reference does not need to be
returned in the GTPForwardReply message.

If the message is sent by a Terminal, then the gtp_from_terminal operation will be
invoked on the access_bridge_reference to forward the message to the “old”
Access Bridge; see Section 8.5, “GTP Message Forwarding,” on page 8-14.

If the message is sent by an Access Bridge, the access_bridge_reference will be
the source of the forwarded GTP message.

Special Notes
None

Forwardable
No - a GTPForward message cannot be encapsulated in another GTPForward
message. However, Access Bridges can forward forwarded messages given to them by
invoking the gtp_from_terminal and gtp_to_terminal operations.

7.2.18 GTPForwardReply Message
The GTPForwardReply message has a message body containing the CDR encoded
value of:

struct GTPForwardReplyBody {
unsigned long gtp_message_id;
ForwardStatus status;

};

enum ForwardStatus {
FORWARD_SUCCESS,
FORWARD_ERROR_ACCESS_BRIDGE_UNREACHABLE,
FORWARD_ERROR_UNKNOWN_SENDER,
FORWARD_UNKNOWN_FORWARD_ERROR

};

Source
Terminal Bridge and Access Bridge
7-18 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

Description
This message is sent by either the Terminal Bridge or the Access Bridge in response to
a GTPForward message. The gtp_message_id element is the same as passed in the
GTPForward message for which this is a reply.

If this reply message is sent by an Access Bridge, the FORWARD_SUCCESS status
indicates that the encapsulated GTP message was delivered to the old Access Bridge.
Any needed GTP replies or GTP error messages will be returned in separate
GTPForward messages from that Access Bridge. However, if the status is either
FORWARD_ERROR_ACCESS_BRIDGE_UNREACHABLE or
FORWARD_ERROR_UNKNOWN_SENDER, then the terminal should consider the
tunnel on that access bridge to be lost.

If this reply message is sent by a Terminal Bridge, upon receipt of this message the
Access Bridge will call back to the originating Access Bridge (by mapping
gtp_message_id back to the access_bridge_reference and the
gtp_message_id given through the gtp_to_terminal operation) by invoking its
gtp_acknowledge operation to deliver the status field. The FORWARD_SUCCESS
status indicates that the encapsulated GTP message was accepted by the Terminal GTP
engine. If the Terminal has already forgotten about or given up on the Access Bridge
who sent the forwarded GTP message, then the status will be set to
FORWARD_ERROR_UNKNOWN_SENDER. The Access Bridge will then consider
that terminal lost, and begin tearing down its tunnel end as if the time_to_live had
expired.

Special Notes
None

Forwardable
Yes - this is due to the fact that outstanding GTPForwardRequests may have been in
progress during a transition to a new Access Bridge.

7.2.19 Error Message
The Error message has a message body containing the CDR encoded value of:

struct ErrorBody {
unsigned short gtp_seq_no; // seq_no element in GTP header
ErrorCode error_code;

};

enum ErrorCode {
ERROR_UNKNOWN_SENDER,
ERROR_PROTOCOL_ERROR,
ERROR_UNKNOWN_FATAL_ERROR

};
May 2005 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-19

7

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to handle GTP
protocol errors and to initiate a shutdown. The gtp_header.seq_no of the GTP
message is provided for debugging purposes since this tunnel will be immediately
destroyed.

Special Notes
None

Forwardable
Yes - this will be used by either the Terminal Bridge or an old Access Bridge to cause
a disorderly shutdown since the Terminal Bridge and the old Access Bridge are
obviously out of sync.

7.3 TCP Tunneling
In TCP Tunneling the GTP messages are transmitted in a byte stream without any
padding or message boundary marker.

The transport end-point is given as a string: <ip_address>:port_number, where
<ip_address> is either a DNS name of a host or an IP address in dotted decimal
notation.

7.4 UDP Tunneling
In UDP Tunneling the GTP messages are transmitted using the framing protocol, called
UDP Tunneling Protocol, described below, in the payload of UDP datagrams.

The transport end-point is given as a string: <ip_address>:<port_number>, where
<ip_address> is an IP address in dotted decimal notation (123.45.67.89, for example)
so that the terminal does not need to do a DNS lookup.

7.4.1 UDP Tunneling Protocol
The UDP Tunneling Protocol (UTP) provides the reliability and ordered delivery of
messages assumed by the GIOP Tunneling Protocol. UTP assumes that it does not get
corrupted data.

UTP defines encapsulation of GTP messages. It also supports segmentation and
reassembly of GTP messages and selective acknowledgments.

UTP is chunk-based in the sense that several GTP messages can be concatenated in one
UTP message. A UTP message is the payload of a UDP datagram. A UTP message
contains a UTP header and one or more UTP chunks.
7-20 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

The UTP header is four bytes: UTP Sequence Number (unsigned short) and Number of
UTP chunks (unsigned short) in the UTP message. The network byte order (that is Big-
Endian) is always used to express numeric values. In UTP, strings are always in 8-bit
ANSI ASCII format.

The basic structure of a UTP chunk is TFLV: type-flags-length-value. However, some
chunks do not have Flags, Length, and/or Value field.

• The Type field is one octet.

• If present, the Flags field is one octet. It is used to denote fragmentation.

• The Length field is 0-2 octets telling the length of the Value field in the network
byte order if the Value field can be of variable length.

• The Value field if present contains the payload of a UTP chunk.

The UTP chunks are:

1. InitialAccessRequest: sent by the Terminal Bridge. The Flags (one octet) and
Length (unsigned short) fields are present. The Value (variable length) field
contains a cookie (sequence of octets) and the transport address end-point of the
Terminal Bridge (string).

2. InitialAccessReply: sent by the Access Bridge. The Flags (one octet) and Length
(unsigned short) fields are present. The Value (variable length) field contains a
cookie (sequence of octets) and the transport address end-point of the Access
Bridge (string).

3. Pause: sent by the Terminal or Access Bridge. No Flags, Length, and Value field.
The receiving bridge should interpret this chunk so that the sending bridge will
silently discard all UTP messages until it receives the Resume chunk.

4. Resume: sent by the Terminal or Access Bridge. No Flags, Length, and Value field.
The receiving bridge should interpret this chunk so that the sending bridge will start
to accept the UTP chunks again.

5. Acknowledge: sent by the Terminal or Access Bridge. No Flag Field. The Length
(one octet) tells the number of entries in the Value field. The actual length of the
Value field in octets is the content of the Length field multiplied by two. The first
unsigned short tells the highest Sequence Number of UTP messages received in
order. The rest unsigned shorts tell which other UTP messages have been received.

6. GTPData: sent by the Terminal or Access Bridge. Flags (one octet) indicate
fragmentation. The Length field (unsigned short) tells the length of the Value field.

7. CloseRequest: sent by the Terminal or Access Bridge. No Flags, Length, and Value
field.

8. CloseReply: sent by the Terminal or Access Bridge. No flags, Length, and Value
field.

9. CloseIndication: sent by the Terminal or access Bridge. No Flags, Length, and
Value field.
May 2005 CORBA Wireless Access & Terminal Mobility: UDP Tunneling 7-21

7

7.4.2 Sequence Numbering
Each communication session must start sequence numbering from 0x0001. In other
words the UTP message containing the InitialAccessRequest chunk (or its first
fragment) and the associated reply containing the InitialAccessReply chunk (or its first
fragment) MUST have UTP Sequence Number 0x0001.

The sequence number counting follows the usual modulo arithmetic with the exception
that the sequence number 0x0001 follows the sequence number 0xFFFF.

The UTP Sequence Number 0x0000 is reserved for UTP messages that only contain
the Acknowledge chunk and/or the Pause chunk. These messages MUST NOT be
acknowledged.

7.4.3 Retransmission Policy
Retransmissions in UDP Tunneling Protocol are controlled by selective
acknowledgements by retransmission timers as in TCP with SACK option enabled.

When the sender detects from the selective acknowledgements that the acknowledged
sequence has holes, the missing messages are immediately retransmitted.

A message is also retransmitted when its retransmission timer expires. The
retransmission timer MUST be computed as specified for TCP in RFC 2988 [RFC
2988].

7.4.4 Fragmentation
The two rightmost bits of the Flags field are used to denote fragmentation of the Value
field:

- 0x00: middle segment

- 0x01: first segment

- 0x02: last segment

- 0x03: unfragmented chunk

7.4.5 InitialAccessRequest
The chunk Type is 0x01. The Flags field (one octet) indicates fragmentation. The
Length field is two octets indicating the length of the Value field as an unsigned short.

The Value field contains CDR encoded value of:

struct InitialAccessRequestChunk {
sequence<octet> cookie;
string terminal_bridge_udp_address;

};
7-22 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

where cookie is some bit-pattern selected by the Terminal Bridge and
terminal_bridge_udp_address is a string containing the IP address (in dotted
decimal notation) of the terminal and the UDP port number to which the Access Bridge
shall send the UTP messages (for example, “123.45.67.89:9876”).

The InitialAccessRequest chunk can only be sent by the Terminal Bridge.

Note – UTP message containing this chunk (or its first fragment) MUST have
sequence number 0x0001.

7.4.6 InitialAccessReply
The chunk Type is 0x02. The Flags field (one octet) indicates fragmentation. The
Length field is two octets indicating the length of the Value field as an unsigned short.

The Value field contains CDR encoded value of:

struct InitialAccessReplyChunk {
sequence<octet> cookie;
string access_bridge_udp_address;

}

where cookie is the bit-pattern received in the InitialAccessRequest from the
Terminal Bridge and access_bridge_udp_address is a string containing the IP
address (in dotted decimal notation) of the Access Bridge and the UDP port number to
which the Terminal Bridge shall send the UTP messages.

The InitialAccessReply chunk can only be sent by the Access Bridge.

Note – UTP message containing this chunk (or its first fragment) MUST have
sequence number 0x0001.

7.4.7 Pause
The chunk Type is 0x03. The chunk does not have other fields.

The receiving bridge should interpret this chunk so that the sending bridge will silently
discard all UTP messages until it sends the Resume chunk.

Both Access and Terminal Bridge can use this chunk.

Note – If the UTP message contains only the Pause chunk (with or without the
Acknowledge chunk), then the UTP Sequence Number MUST be 0x0000. The receiver
SHOULD NOT acknowledge such a message.
May 2005 CORBA Wireless Access & Terminal Mobility: UDP Tunneling 7-23

7

Note – After sending the Pause chunk, the sender SHOULD reply to each arriving
message by a UTP message containing the Pause chunk. The UTP message MAY also
contain Acknowledge and/or GTPData chunks.

7.4.8 Resume
The chunk Type is 0x04. The chunk does not have other fields.

The receiving bridge should interpret this chunk so that the sending bridge will accept
UTP messages again.

Both Access and Terminal Bridge can use this chunk.

Note – The Resume chunk should be included in each UTP message until the sender
has received an acknowledgement for a message containing a Resume chunk.

7.4.9 Acknowledge
The chunk Type is 0x05. The chunk does not have the Flags field. The Length (one
octet) tells the number of entries in the Value field. The actual length of the Value field
in octets is the content of the Length field multiplied by two.

The first unsigned short in the Value field tells the highest Sequence Number of UTP
messages received in order. The rest unsigned shorts tell which other UTP messages
have been received.

Both Access and Terminal Bridge can use this chunk.

Note – If the UTP message contains only the Acknowledge chunk (with or without the
Pause chunk), then the UTP Sequence Number MUST be 0x0000. The receiver
SHOULD NOT acknowledge such a message.

7.4.10 GTPData
The chunk Type is 0x06. The Flags field (one octet) indicates fragmentation. The
Length field (unsigned short) tells the length of the Value field.

The Value field contains a GTP message or a part of it.

7.4.11 Close Request
The chunk Type is 0x07. The chunk does not have any other fields.

The chunk can be sent either by the Terminal Bridge or by the Access Bridge in
response to the CloseRequest chunk.
7-24 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

The bridge sends this chunk when it wants to close the communication session. After
sending this chunk the bridge mwaits for the UTP message cointaining the CloseReply
chunk. The bridge sending the CloseRequest chunk MUST process and acknowledge
all UTP messages until receiving the CloseReply chunk.

When a bridge receives the CloseRequest chunk, it SHOULD immediately retransmit
all unacknowledged UTP messages as well as all remaining GTP messages before
sending the CloseReply chunk.

7.4.12 CloseReply
The chunk Type is 0x08. The chunk does not have any other fields.

The chunk can be sent either by the Terminal Bridge or by the Access Bridge in
response to the CloseRequest chunk.

The bridge receiving the CloseRequest chunk SHOULD NOT send the CloseReply
chunk before all other UTP messages have been acknowledgeged. After sending the
CloseReply chunk, the bridge SHOULD wait for the acknowledgement before
releasing all data structures associated with the UTP communication session.

The bridge receiving the CloseReply chunk SHOULD acknowledge the UTP message
containing the CloseReply chunk by a UTP message having sequence number 0x0000.
After sending this reply the bridge can release all data structures associated to the UTP
communication session.

If a bridge receives CloseReply chunk, but it has not send the CloseRequest chunk, the
bridge SHOULD send the CloseIndication chunk. See Section 7.4.13, “CloseIndication
below.

7.4.13 CloseIndication
The chunk Type is 0x09. The chunk does not have any other fields.

The chunk can be sent either by the Terminal Bridge or by the Access Bridge.

The bridge send this chunk to inform the peer bridge that it will close the
communication session. The bridge MAY wait for the acknowledgement of the UTP
message containing the CloseIndication chunk. In this case the bridge SHOULD
discard all arriving UTP messages and response by retransmitting the UTP message
containing the CloseIndication chunk. However, the bridge does not need to wait for
the acknowledgement of the UTP message containing the CloseIndication chunk. It
can immediately, after sending the CloseIndication chunk, release all data structures
related to this communication session and stop accepting messages to the UDP port.

When the peer bridge receives the CloseIndication chunk, it SHOULD immediately
acknowledge that UTP message and stop using the UDP end-point of the peer bridge.
After sending the acknowledgement, the bridge SHOULD release all data structures
related to the UTP communication session.
May 2005 CORBA Wireless Access & Terminal Mobility: UDP Tunneling 7-25

7

7.5 WAP Tunneling
The WAP Tunneling Protocol (WAPTP) uses the Wireless Application Protocol (WAP)
to transmit GTP messages between Terminal and Access Bridge.

The main design principle in WAPTP has been simplicity of the implementation. It is
assumed that WAPTP will be used in small embedded devices with limited capabilities.

WAPTP ensures that the assumptions stated by GTP are not violated, specifically that
no corrupted data is delivered and that the order of GTP messages is preserved.

7.5.1 Wireless Datagram Protocol
WAPTP uses the Wireless Datagram Protocol (WDP) [WDP] of the WAP specification.
It operates above the data capable bearer services supported by multiple network types.
WDP specification describes reference models for a wide variety of networks.

WDP provides a service similar to UDP, such as unreliable transmission of datagrams
and use of port numbers to identify multiple applications in one transport address.

"WDP supports several simultaneous communication instances from a higher layer
over a single underlying WDP bearer service. The port number identifies the higher
layer entity above WDP." [WDP, 5.2]
"The services offered by WDP include application addressing by port numbers,
optional segmentation and reassembly and optional error detection. The services
allow for applications to operate transparently over different available bearer
services." [WDP, 5.1]

If the used bearer does not provide segmentation and reassembly (SAR), then it is the
responsibility of the WDP implementation to do it.

"If the underlying bearer does not provide Segmentation and Reassembly the feature
is implemented by the WDP provider in a bearer dependent way." [WDP, 7.1]

The maximum size of datagram is bearer dependent. It is assumed that the GTP
implementation does not attempt to send GTP messages that are larger than the
maximum datagram size for given bearer (this implies that the ORB also knows this
limitation and fragments GIOP messages accordingly).

WDP ensures the correct order of datagram segments, but not the order of datagrams
themselves.

7.5.2 WAP Tunneling Protocol
In WAPTP, GTP messages are transmitted in Invoke PDUs of WAP WDP, one GTP
message in one WDP datagram.

WDP datagrams are not guaranteed to preserve order, so WAPTP MUST delay the
delivery of GTP messages that have higher sequence numbers than expected.
7-26 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

7

7.5.3 WAPTP address types
The WDP supports several address types including IP addresses (both IPv4 and IPv6),
MSISD (a telephone number) in various flavors (IS_637, ANSI_136, GSM, CDMA,
iDEN, FLEX, TETRA), GSM_Service_Code, TETRA_ISI, and Mobitex MAN. The
WDP transport address end-points are given as CDR encapsulation of:

struct WDPAddressFormat {
octet wdp_version;// mostly 0x00, depends on bearer; see [WDP]
octet wap_assigned_number;// identifies network, bearer, address

// type combination; see [WDP, Appendix C]
unsigned short wap_port;// Port number
string address;

};

The most usual address types are IP address and telephone number (MSISDN). An IP
address must be in the decimal dotted notation (e.g., 123.1.2.23) so that the terminal
does not need to make a DNS lookup. All possible stringified formats of telephone
numbers are specified in [GFD].

7.6 Bluetooth Tunneling
Because the purpose of tunneling is just to deliver GIOP messages over wireless links,
tunneling should be done as low as possible in the Bluetooth stack (Figure 7-2) to have
minimum overhead.

Figure 7-2 Bluetooth Protocol Stack [BT-SIG]

Any Bluetooth profile, or even the RFCOMM protocol, is not appropriate because they
have many additional features that are not needed for tunneling. The Baseband
protocol through the Host Controller Interface (HCI) is not sufficient because it does

vCard/vCal
OBEX

WAE
WAP

UDP
IP

TCP

PPP

RFCOMM

AT
Commands TCS BIN SDP

L2CAP

LMP

Baseband

Bluetooth Radio

Audio

Host Controller Interface

vCard/vCal
OBEX

WAE
WAP

UDP
IP

TCP

PPP

RFCOMM

AT
Commands TCS BIN SDP

L2CAP

LMP

Baseband

Bluetooth Radio

Audio

Host Controller Interface
May 2005 CORBA Wireless Access & Terminal Mobility: Bluetooth Tunneling 7-27

7

not support protocol multiplexing and de-multiplexing for upper layers. Therefore,
L2CAP is the most suitable protocol in the Bluetooth stack to be used in GIOP
Tunneling.

Since L2CAP is right above HCI, it has a low overhead but still provides protocol
multiplexing and de-multiplexing for upper layers. L2CAP provides connection
oriented data services, a reliable channel and ordered delivery of messages using the
mechanisms available at the Baseband layer. It also provides notification of disorderly
connection lost. However, L2CAP has limits for packet size, so GTP message
segmentation and reassembly MUST be implemented to provide a possibility to send
messages of any size.

In Bluetooth Tunneling the GTP messages are transmitted using L2CAP Tunneling
Protocol (LTP) in the payload of L2CAP packets.

The transport end-point is given as a string: <BD_ADDR>#<PSM>, where
<BD_ADDR> is a unique 48-bit Bluetooth device address given in colon-ed
hexadecimal notation (e.g., 7F:00:00:01:05:B3) and <PSM> is protocol/service
multiplexer given as an unsigned integer in range 0...65535 (two octets).

7.6.1 LTP Tunneling Protocol
The L2CAP Tunneling Protocol (LTP) provides the reliability and ordered delivery of
messages assumed by the GIOP Tunneling Protocol. LTP assumes that it does not get
corrupted data.

LTP defines encapsulation of GTP messages. It also supports segmentation and
reassembly of GTP messages.

An LTP message is the payload of an L2CAP packet. One LTP message contains either
one GTP message or a fragment of one GTP message. The structure of an LTP message
is FLV: flags-length-value. The network byte order (that is Big-Endian) is always used
to express numeric values.

• The Flags field is one octet. It is used to denote fragmentation (segmentation).

• The Length field is 2 octets telling the length of the Value field in the network byte
order (that is Big-Endian).

• The Value field contains the LTP payload, that is one GTP message or a fragment of
a GTP message.

7.6.2 Fragmentation
The two rightmost bits of the Flags field is used to denote fragmentation of the Value
field:

• 0x00: middle segment
• 0x01: first segment
• 0x02: last segment
• 0x03: unfragmented message
7-28 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

Handoff and Access Recovery 8
Contents

This chapter contains the following sections.

Generally, a handoff consists of three distinct phases: the information gathering phase,
the decision phase, and the execution phase. Bridge handoff, that is the handoff that is
visible on the ORB level, is a part of the execution phase in cases where the mobile
terminal moves from one Access Bridge to another.

The handoff support is an optional feature of this specification. The level of the GIOP
Tunneling Protocol identifies whether (Level 2) or not (Level 1) handoff support is
available.

There are two different cases of handoff:

1. backward handoff

2. forward handoff (access recovery).

The first one is the normal case whereas the second one is performed in order to re-
establish connectivity after a sudden loss.

Section Title Page

“Initiation” 8-2

“Network Initiated Handoff” 8-3

“Terminal Initiated Handoff” 8-8

“Access Recovery” 8-10

“GTP Message Forwarding” 8-14

“Terminal Tracking” 8-16
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 8-1

8

Note – In the following we use the term handoff to mean the backward handoff and the
term access recovery to mean the forward handoff.

The handoff may be network initiated or terminal initiated. The access recovery is
always terminal initiated.

8.1 Initiation
The AccessBridge interface contains the start_handoff operation, which is called
by an external handoff control application to initiate the handoff procedure. In the
MobileTerminal module there is also the HandoffCallback interface that contains
the report_handoff_status operation, which is used by the Access Bridge to report
the outcome status of handoff to the external handoff control application.

module MobileTerminal {
...

interface HandoffCallback {
void report_handoff_status (

in HandoffStatus status
);

};
...
};

Parameters

module MobileTerminal {
...

interface AccessBridge {
...

void start_handoff(
in TerminalId terminal_id,
in AccessBridge new_access_bridge,
in HandoffCallback handoff_callback_target

);

...

};
...
};

status Outcome status of handoff procedure.
8-2 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

8

Parameters

8.2 Network Initiated Handoff
The network initiated handoff starts when an external application invokes the
start_handoff operation in the Access Bridge currently serving the terminal. In the
description below this Access Bridge is referred to as the old Access Bridge. The
Access Bridge to which the terminal moves is referred to as the new Access Bridge.

The handoff procedure assumes that the terminal can establish connectivity to the new
Access Bridge before releasing the connectivity to the old Access Bridge. If this
cannot be done, then the alternative procedure that is described in Section 8.2.5,
“Alternative Handoff Procedure,” on page 8-6 must be used.

8.2.1 Old Access Bridge
1. The old Access Bridge gets involved when the start_handoff operation is invoked

on it.

2. The old Access Bridge invokes the transport_address_request operation in the
new Access Bridge, which returns a list of transport addresses of the new Access
Bridge and a Boolean value indicating whether or not the new Access Bridge
accepts the terminal.

3. If the terminal is not accepted, then the old Access Bridge only reports the
HANDOFF_FAILURE status by invoking the report_handoff_status operation
at the handoff_callback_target and the handoff procedure is (unsuccessfully)
completed. The old Access Bridge continues to serve the Terminal Bridge as the
current Access Bridge.

4. If the terminal was accepted by the new Access Bridge, then the old Access Bridge
sends the HandoffTunnelRequest message to the Terminal Bridge.

5. The following two steps (6 and 7) can take place in any order.

6. When the old Access Bridge gets the HandoffTunnelReply message from the
Terminal Bridge, then
• if the status indicates a failure in handoff, then the old Access Bridge reports the

HANDOFF_FAILURE status by invoking the report_handoff_status
operation at the handoff_callback_target and the handoff procedure is
(unsuccessfully) completed. The old Access Bridge continues to serve the
Terminal Bridge as the current Access Bridge.

terminal_id Identifies the terminal to be moved to a new Access
Bridge.

new_access_bridge Reference to the new Access Bridge.

handoff_callback_target Object to which the status of handoff will be
reported.
May 2005 CORBA Wireless Access & Terminal Mobility: Network Initiated Handoff 8-3

8

• if the status is NO_MAKE_BEFORE_BREAK, then the old Access Bridge waits
for recovery_request before reporting the handoff status using the
report_handoff_status operation at the handoff_callback_target. (See also
Section 8.2.5, “Alternative Handoff Procedure,” on page 8-6).

• if the status indicates a successful handoff, then the old Access Bridge waits for
the ReleaseTunnelRequest message from the Terminal Bridge. After that it
sends the ReleaseTunnelReply message to the Terminal Bridge and releases its
transport end-point to the Terminal Bridge.

7. When the new Access Bridge invokes the handoff_completed operation at the
old Access Bridge, then the old Access Bridge knows that the new Access Bridge
has taken the responsibility of the terminal.

8. It is assumed that the handoff status received by the old Access Bridge from the
Terminal Bridge and the new Access Bridge is same. If they are not the same, then
the old Access Bridge takes implementation depended actions to recover this error
situation.

9. The old Access Bridge notifies all other Access Bridges interested in movements of
the terminal (see Section 8.6, “Terminal Tracking,” on page 8-16).

10. If the old Access Bridge supports Mobility Event Notifications, it generates a
notification of a departing terminal.

11. The old Access Bridge reports the handoff status by invoking the
report_handoff_status operation at the handoff_callback_target.

8.2.2 New Access Bridge
1. The new Access Bridge gets involved when the old Access Bridge invokes the

transport_address_request operation at the new Access Bridge. If the new
Access Bridge does not accept the terminal, then nothing needs to be done. The new
Access Bridge should take the invocation of the transport_address_request
operation only as a hint of a forthcoming handoff because the Terminal Bridge may
use the access recovery procedure instead of the handoff procedure; see
Section 8.2.5, “Alternative Handoff Procedure,” on page 8-6.

2. The new Access Bridge gets the EstablishTunnelRequest message from the
Terminal Bridge.

3. The new Access Bridge invokes the update_location operation at the Home
Location Agent.

4. The new Access Bridge sends the EstablishTunnelReply message to the Terminal
Bridge.

5. The new Access Bridge invokes the handoff_completed operation at the old
Access Bridge.

6. If the location update failed, then the new Access Bridge frees its transport end-
point to the Terminal Bridge.
8-4 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

8

7. If the location update was successful and the new Access Bridge supports Mobility
Event Notifications, it generates a notification of an arriving terminal.

8.2.3 Terminal Bridge
1. The Terminal Bridge gets involved when it receives the HandoffTunnelRequest

message from the old Access Bridge.

2. The Terminal Bridge establishes transport connectivity to the new Access Bridge. If
this fails, then the Terminal Bridge sends the HandoffTunnelReply message to the
old Access Bridge that indicates a handoff failure, and the handoff procedure is
(unsuccessfully) completed. The Terminal Bridge continues to use the GIOP Tunnel
to the old Access Bridge.

3. The Terminal Bridge sends the EstablishTunnelRequest message to the new
Access Bridge.

4. The Terminal Bridge waits for the EstablishTunnelReply message from the new
Access Bridge.

5. The Terminal Bridge sends the HandoffTunnelReply message to the old Access
Bridge.

6. If the request of tunnel establishment was rejected, then the Terminal Bridge
continues to use the tunnel to the old Access Bridge.

7. If the tunnel to the new Access Bridge was granted, then the Terminal Bridge sends
the ReleaseTunnelRequest message to the old Access Bridge. After receiving
the ReleaseTunnelReply message from the old Access Bridge, the Terminal
Bridge can release its transport end-point to the old Access Bridge.

8. If the Terminal Bridge supports Mobility Event Notifications, it generates a
notification of handoff.
May 2005 CORBA Wireless Access & Terminal Mobility: Network Initiated Handoff 8-5

8

8.2.4 Message Sequence Chart

Figure 8-1 Message Sequence Chart

8.2.5 Alternative Handoff Procedure
If the terminal cannot have simultaneous transport connectivity to the old and new
Access Bridge, then the following procedure is used by the Terminal Bridge.

1. The Terminal Bridge gets involved when it receives the HandoffTunnelRequest
message from the old Access Bridge.

2. The Terminal Bridge sends the HandoffTunnelReply message to the old Access
Bridge in which the handoff status NO_MAKE_BEFORE_BREAK.

3. The Terminal Bridge sends the ReleaseTunnelRequest message to the old
Access Bridge and waits for the ReleaseTunnelReply from the old Access
Bridge.

4. The Terminal Bridge releases its transport end-point to the old Access Bridge.

5. The Terminal Bridge establishes GIOP Tunnel to the new Access Bridge using the
access recovery procedure described in Section 8.4, “Access Recovery,” on
page 8-10.

The old Access Bridge sees from the handoff status of NO_MAKE_BEFORE_BREAK
that the terminal will use the access recovery procedure instead of the handoff
procedure. The new Access Bridge sees this alternative handoff procedure as usual
access recovery procedure.

TB old AB new AB
start_handoff

HandoffTunnelRequest
transport_address_request

EstablishTunnelRequest
Establishment of transport connectivity

HLA

update_ location
EstablishTunnelReply

HandoffTunnelReply handoff_completed

ReleaseTunnelRequest

ReleaseTunnelReply notify other ABs

DepartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification

report_handoff_status

TB old AB new AB
start_handoff

HandoffTunnelRequest
transport_address_request

EstablishTunnelRequest
Establishment of transport connectivity

HLA

update_ location
EstablishTunnelReply

HandoffTunnelReply handoff_completed

ReleaseTunnelRequest

ReleaseTunnelReply notify other ABs

DepartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification

report_handoff_status
8-6 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

8

When the old Access Bridge receives NO_MAKE_BEFORE_BREAK as response to
the HandoffTunnelReply message, then the Access Bridge waits for
recovery_request before reporting the handoff status using the
report_handoff_status operation at the handoff_callback_target.

8.2.6 IDL

module MobileTerminal {
...

interface AccessBridge {
...

void transport_address_request(
// Called by the old Access Bridge at the new Access Bridge

in TerminalId terminal_id,
out AccessBridgeTransportAddressList

new_access_bridge_addresses,
out boolean terminal_accepted

);
...

};
...
};

Parameters

module MobileTerminal {
...

interface AccessBridge {
...

void handoff_completed(
// called by the new Access Bridge at the old Access Bridge

in TerminalId terminal_id,
in HandoffStatus status

) ;
...

};
...
};

terminal_id Identification of terminal that will move.

new_access_bridge_addresses List of transport addresses that the terminal
can contact in order to establish transport
connectivity.

terminal_accepted FALSE, if the called Access Bridge does
not accept the terminal.
May 2005 CORBA Wireless Access & Terminal Mobility: Network Initiated Handoff 8-7

8

Parameters

8.3 Terminal Initiated Handoff
The terminal initiated handoff procedure requires that the terminal can establish
connectivity to the new Access Bridge before releasing the connectivity to the old
Access Bridge. If this cannot be done, then the terminal initiated handoff must be done
using the access recovery mechanism: The Terminal Bridge closes connectivity to the
old Access Bridge and then carries out the access recovery to the new Access Bridge.

Below we describe action taken by the Terminal Bridge and by the new and old Access
Bridges.

8.3.1 Terminal Bridge
1. The Terminal Bridge establishes transport connectivity to the new Access Bridge.

2. The Terminal Bridge sends the EstablishTunnelRequest message to the new
Access Bridge.

3. The Terminal Bridge waits for the EstablishTunnelReply message from the new
Access Bridge.

4. If the tunnel establishment was rejected, then the Terminal Bridge releases its
transport end-point to the new Access Bridge and the handoff procedure is
(unsuccessfully) completed. The Terminal Bridge continues to use the GIOP Tunnel
to the old Access Bridge.

5. The Terminal Bridge sends the ReleaseTunnelRequest message to the old
Access Bridge.

6. After receiving the ReleaseTunnelReply message from the old Access Bridge,
the Terminal Bridge can release its transport end-point to the old Access Bridge.

7. If the Terminal Bridge supports Mobility Event Notifications, it generates a
notification of handoff.

8.3.2 New Access Bridge
1. The new Access Bridge gets involved when it receives the

EstablishTunnelRequest message from the Terminal Bridge.

2. The new Access Bridge invokes the update_location operation at the Home
Location Agent.

terminal_id Identifies the terminal.

status Status of handoff.
8-8 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

8

3. If the location update failed, then the new Access Bridge sends the
EstablishTunnelReply message to the Terminal Bridge and releases its transport
end-point to the Terminal Bridge and the handoff procedure is (unsuccessfully)
completed.

4. The new Access Bridge invokes the handoff_in_progress operation at the old
Access Bridge.

5. The new Access Bridge sends the EstablishTunnelReply message to the Terminal
Bridge.

6. If the new Access Bridge supports Mobility Event Notifications, it generates a
notification of an arriving terminal.

8.3.3 Old Access Bridge
1. The old Access Bridge gets involved when the new Access Bridge invokes the

handoff_in_progress operation at the old Access Bridge.

2. The old Access Bridge waits for the ReleaseTunnelRequest message from the
Terminal Bridge.

3. After sending the ReleaseTunnelReply message to the Terminal Bridge, the old
Access Bridge can release its transport end-point to the Terminal Bridge.

4. The old Access Bridge notifies all other Access Bridges interested in movements of
the terminal (see Section 8.6, “Terminal Tracking,” on page 8-16).

5. If the old Access Bridge supports Mobility Event Notifications, it generates a
notification of a departing terminal.

8.3.4 Message Sequence Chart

Figure 8-2 Message Sequence Chart

TB old AB new AB

EstablishTunnelRequest

Establishment of transport connectivity

HLA

update_location

EstablishTunnelReply

handoff_in_progress

ReleaseTunnelRequest

ReleaseTunnelReply notify other ABs

DepartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification

TB old AB new AB

EstablishTunnelRequest

Establishment of transport connectivity

HLA

update_location

EstablishTunnelReply

handoff_in_progress

ReleaseTunnelRequest

ReleaseTunnelReply notify other ABs

DepartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification
May 2005 CORBA Wireless Access & Terminal Mobility: Terminal Initiated Handoff 8-9

8

8.3.5 IDL

module MobileTerminal {
...

interface AccessBridge {
...

void handoff_in_progress (
// called by the old Access Bridge in the new Access Bridge

in TerminalId terminal_id,
in AccessBridge new_access_bridge

);
...

};
...
};

Parameters

8.4 Access Recovery
When the Terminal Bridge detects that the connectivity to the Access Bridge is lost, a
dropout notification is generated in the terminal domain and the Terminal Bridge starts
the access recovery procedure. There are two possible successful outcomes of the
access recovery procedure:

• The access is re-established to the same Access Bridge as before.

• The access is established to a new Access Bridge.

8.4.1 Recovery to the Old Access Bridge

8.4.1.1 Terminal Bridge
1. The Terminal Bridge establishes transport connectivity to an Access Bridge.

2. The Terminal Bridge sends the EstablishTunnelRequest message to the Access
Bridge.

3. The Terminal Bridge waits for the EstablishTunnelReply message from the
Access Bridge.

4. From the EstablishTunnelReply message the Terminal Bridge learns that the
Access Bridge is the same as before and which is the last GTP message that the
Access Bridge has received. The Terminal Bridge re-transmits the lost GTP
messages.

terminal_id Identifies the terminal.

new_access_bridge Reference of the new access bridge.
8-10 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

8

5. If the Terminal Bridge supports Mobility Event Notifications, it generates a
recovery notification.

8.4.1.2 Old Access Bridge
1. The old Access Bridge receives the EstablishTunnelRequest from the Terminal

Bridge.

2. From the EstablishTunnelRequest message the Access Bridge learns that the
tunnel establishment is access recovery to it and which is the last GTP message that
the Terminal Bridge has received.

3. The Access Bridge sends the EstablishTunnelReply message and re-transmits the
lost GTP messages.

4. If the old Access Bridge supports Mobility Event Notifications, it generates an
access recovery notification only if it has generated the access dropout notification
for the terminal.

8.4.2 Recovery to New Access Bridge

8.4.2.1 Terminal Bridge
1. Same as in recovery to the old Access Bridge.

2. Same as in recovery to the old Access Bridge.

3. Same as in recovery to the old Access Bridge.

4. From the EstablishTunnelReply message the Terminal Bridge learns that the
Access Bridge is a new one and which is the last GTP message that the old Access
Bridge has received. Another possibility is that the EstablishTunnelReply
indicates location update failure, which terminates the recovery procedure.

5. If the Terminal Bridge supports the Mobility Event Notifications, then it generates a
handoff notification.

6. The Terminal Bridge re-transmits the GTP messages that the old Access Bridge has
lost through the new Access Bridge.

8.4.2.2 New Access Bridge
1. The new Access Bridge receives the EstablishTunnelRequest from the Terminal

Bridge.

2. From the EstablishTunnelRequest message the Access Bridge learns that the
tunnel establishment is access recovery to a new Access Bridge, and which is the
last GTP message that the Terminal Bridge has received.

3. The new Access Bridge invokes the location_update operation at the Home
Location Agent.
May 2005 CORBA Wireless Access & Terminal Mobility: Access Recovery 8-11

8

4. If the location update fails, the new Access Bridge sends the
EstablishTunnelReply message that indicates location update failure and
completes the recovery procedure by releasing its transport end-point to the
Terminal Bridge.

5. If the location update was successful, the new Access Bridge invokes the
recovery_request operation at the old Access Bridge.

6. The new Access Bridge sends the EstablishTunnelReply message to the Terminal
Bridge. If the recovery_request operation in step 5 raised an exception, then the
new Access Bridge sends the EstablishTunnelReply message to the Terminal
Bridge with status ACCESS_REJECT_RECOVERY_FAILURE.

7. If the new Access Bridge supports The Mobility Event Notifications, it generates a
handoff arrival notification.

8. As long as needed the new Access Bridge forwards GTP messages between the
Terminal Bridge and the old Access Bridge(s).

8.4.2.3 Old Access Bridge
1. The old Access Bridge gets involved when the new Access Bridge invokes the

recovery_request operation at it. If the terminal is unknown, the old Access
Bridge returns the UnknownTerminalId exception.

2. The old Access Bridge notifies other Access Bridges interested in movements of the
terminal (see Section 8.6, “Terminal Tracking,” on page 8-16).

3. If the old Access Bridge supports Mobility Event Notifications, it generates a
notification of a departing terminal.

4. The old Access Bridge re-transmits the GTP messages that the Terminal Bridge has
lost through the new Access Bridge.
8-12 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

8

8.4.2.4 Message Sequence Chart

Figure 8-3 Message Sequence Chart

8.4.2.5 IDL

module MobileTerminal {
...

interface AccessBridge {
...

void recovery_request (
// called by the new Access Bridge in the old Access Bridge

in TerminalId terminal_id,
in AccessBridge new_access_bridge,
in unsigned short highest_gtp_seqno_received_at_terminal,
out unsigned short

highest_gtp_seqno_received_at_access_bridge
) raises (UnknownTerminalId);

...
};

...
};

TB old AB new AB

EstablishTunnelRequest

Establishment of transport connectivity

HLA

update_location

EstablishTunnelReply

recovery_request

notify other ABs

DepartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification

Retransmissions thru the
new Access Bridge

TB old AB new AB

EstablishTunnelRequest

Establishment of transport connectivity

HLA

update_location

EstablishTunnelReply

recovery_request

notify other ABs

DepartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification

Retransmissions thru the
new Access Bridge
May 2005 CORBA Wireless Access & Terminal Mobility: Access Recovery 8-13

8

Parameters

Exceptions

8.5 GTP Message Forwarding
The GIOP requires that replies are sent in the same GIOP connection as the request
came in. Since an Access Bridge is the GIOP connection end-point, replies must go
through it even if the terminal has moved to another Access Bridge. Therefore, the
AccessBridge interface contains two operations to be used in relaying GTP messages
between the Terminal Bridge and an old Access Bridge through the current Access
Bridge.

When an old Access Bridge receives a GIOP message the actual destination of which
is on a terminal that has moved, the old Access Bridge creates the corresponding GTP
message(s) and invokes the gtp_to_terminal operation at the current Access Bridge.
The old Access Bridge may use the query_location operation available in the
HomeLocationAgent interface to learn the current Access Bridge. The current
Access Bridge uses the GTPForward message to deliver the GTP message to the
Terminal Bridge.

When the Terminal Bridge wants to send a GIOP message through an old Access
Bridge, the Terminal Bridge creates the corresponding GTP message(s) and sends the
GTPForward message(s) to the current Access Bridge. The current Access Bridge
invokes the gtp_from_terminal operation at the old Access Bridge.

The old Access Bridge may respond to the gtp_from_terminal with exception
UnknownTerminalId. In this case, the current Access Bridge returns the
GTPForwardReply message with status
FORWARD_ERROR_UNKNOWN_SENDER to the Terminal Bridge.

When the current Access Bridge finds out the status of a forwarded GTP message
received in a gtp_to_terminal invocation by an old Access Bridge, it invokes
gtp_acknowledge at that Access Bridge, reporting the status of forwarding.

terminal_id Identifies the terminal.

new_access_bridge Reference of the new Access Bridge.

highest_gtp_stqno_received_at_terminal Highest GTP sequence number that the
Terminal Bridge has received from the
Access Bridge.

highest_gtp_stqno_received_at_access_bridge Highest GTP sequence number that the
Access Bridge has received from the
Terminal Bridge.

UnknownTerminalId Indicates that the old Access Bridge does
not (anymore) have the tunnel state for the
terminal.
8-14 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

8

module MobileTerminal {
...

interface AccessBridge {
...

void gtp_to_terminal (
in TerminalId terminal_id,
in AccessBridge old_access_bridge,
in unsigned long gtp_message_id,
in GTPEncapsulation gtp_message

) raises (TerminalNotHere);
...

};
...
};

Parameters

Exceptions

module MobileTerminal {
...

interface AccessBridge {
...

void gtp_from_terminal(
in TerminalId terminal_id,
in unsigned long gtp_message_id,
in GTPEncapsulation gtp_message

) raises (UnknownTerminalId);
...

};
...
};

terminal_id Identifies the terminal.

old_access_bridge Identifies the Access Bridge from which the reply comes.

gtp_message_id A handle used in a possible GTP reply message to identify
to which GTP message the reply is.

gtp_message Octet sequence containing the GTP message.

TerminalNotHere Indicates that the terminal has moved from the invoked
Access Bridge.
May 2005 CORBA Wireless Access & Terminal Mobility: GTP Message Forwarding 8-15

8

Parameters

Exceptions

module MobileTerminal {
...

interface AccessBridge {
...

void gtp_acknowledge (
in unsigned long gtp_message_id,
in GTP::ForwardStatus status

);
...

};
...
};

Parameters

8.6 Terminal Tracking
An Access Bridge needs to know the current Access Bridge of the terminal as long as
the Terminal Bridge has open GIOP connections through the Access Bridge. Therefore,
the AccessBridge interface has two operations related to terminal tracking.

When a terminal moves from Access Bridge A to Access Bridge B, then Access Bridge
A notifies the Access Bridge from which the terminal came (let it be Access Bridge C)
and all other Access Bridges that have subscribed handoff notice of that terminal from
the Access Bridge A (let them be Access Bridges D and E). If the Access Bridges C,

terminal_id Identifies the terminal from which the GTP message is
coming.

gtp_message_id A handle to be used in a possible GTP reply message to
identify to which GTP message the reply is.

gtp_message Octet sequence containing the GTP message.

UnknownTerminalId Indicates that the Access Bridge has already forgotten the
identified terminal and can no longer accept forwarded
messages from it.

gtp_message_id The message id the caller received in the
gtp_to_terminal call, to which this is an
acknowledgment.

status The status of forwarding as received in a
GTPForwardReply message.
8-16 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

8

D, and E still want to follow the terminal, they must subscribe the handoff notice from
the Access Bridge B, that is to invoke the subscribe_handoff_notice operation at
the Access Bridge B.

When the terminal moves from the Access Bridge B, the Access Bridge B notifies the
Access Bridge A and those Access Bridges who have subscribed the notice. The
operation is handoff_notice.

module MobileTerminal {
...

interface AccessBridge {
...

void handoff_notice (
in TerminalId terminal_id,
in AccessBridge new_access_bridge

) ;
...

};
...
};

Parameters

module MobileTerminal {
...

interface AccessBridge {
....

void subscribe_handoff_notice (
// called by an Access Bridge who wants to follow terminal move-

ments
in TerminalId terminal_id,
in AccessBridge interested_access_bridge

) raises (TerminalNotHere);
....

};
....
};

terminal_id Identifies the terminal that has just moved.

new_access_bridge Reference to Access Bridge to which the terminal has
moved.
May 2005 CORBA Wireless Access & Terminal Mobility: Terminal Tracking 8-17

8

Parameters

Exceptions

terminal_id Identifies the terminal to be followed.

interested_access_bridge Reference to Access Bridge that wants to receive a
handoff notice when the terminal moves again.

TerminalNotHere Indicates that the terminal has moved from the invoked
Access Bridge.
8-18 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

Conformance A
This specification has five conformance points: One for Home Location Agent and two
for both Access Bridge and Terminal Bridge. The two conformance points for bridges
correspond to the levels of the GIOP Tunneling Protocol. The GTP Level indicates
whether (Level 2) or not (Level 1) handoff is supported.

All products compliant to this specification must support the Mobile IOR as specified
in Chapter 3.

A.1 Home Location Agent
A product compliant to this specification must implement all operations specified in
the HomeLocationAgent interface (see Chapter 4):

• update_location

• deregister_terminal

• query_location

• list_initial_services

• resolve_initial_reference

A.2 Access Bridge

A.2.1 Level 1
A product compliant to this specification must implement GIOP Tunneling Protocol
version 1.0 Level 1 and TCP, UDP, WAP and/or Bluetooth Tunneling as described in
Chapter 7.

The product must also implement the following operations specified in the
AccessBridge interface (see Chapter 5):
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 A-1

A

• list_initial_services segment

• resolve_initial_reference

• terminal_attached

• get_address_info

The product must also act as a relay between an ORB server and an ORB client
fulfilling the message processing requirements of Section 5.3, “Message Processing,”
on page 5-2.

A.2.2 Level 2
An Access Bridge may provide notifications of mobility related events through the
NetworkMobilityChannel (Section 5.3, “Message Processing,” on page 5-2) and
support handoff.

An Access Bridge implementation supporting handoff MUST implement the GIOP
Tunneling Protocol version 1.0 Level 2 (Chapter 7) as well as the handoff and access
recovery procedures and the mechanisms to GTP messaging forwarding and terminal
tracking as described in Chapter 8 for an Access Bridge in any of its possible roles.

The HandoffCallback interface and the following operations specified in the
AccessBridge interface (Chapter 8) must be implemented:

• start_handoff

• transport_address_request

• handoff_completed

• handoff_in_progress

• recovery_request

• gtp_to_terminal

• gtp_from_terminal

• gtp_acknowledge

• handoff_notice

• subscribe_handoff_notice

A.3 Terminal Bridge

A.3.1 Level 1
A product compliant to this specification must implement GIOP Tunneling Protocol
version 1.0 Level 1 and TCP, UDP, WAP, and/or Bluetooth Tunneling as described in
Chapter 7.
A-2 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

A

A.3.2 Level 2
A Terminal Bridge may provide notifications of mobility related events through the
TerminalMobilityChannel (Section 6.1, “Mobility Event Notifications,” on page 6-
1) and support handoff.

A Terminal Bridge implementation supporting handoff MUST implement the GIOP
Tunneling Protocol version 1.0 Level 2 (Chapter 7) as well as the handoff and access
recovery procedures as described in Chapter 8 for the Terminal Bridge procedures and
the mechanism.
May 2005 CORBA Wireless Access & Terminal Mobility, v1.2 A-3

A

A-4 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

 OMG IDL B
B.1 MobileTerminal.idl
//File: MobileTerminal.idl
#ifndef _MOBILE_TERMINAL_IDL_
#define _MOBILE_TERMINAL_IDL_
#include <orb.idl>
#include <IOP.idl>
#pragma prefix "omg.org"
module MobileTerminal {

interface HomeLocationAgent;
interface AccessBridge;
typedef sequence<octet> TerminalId;
typedef sequence<octet> GIOPEncapsulation;
typedef sequence<octet> GTPEncapsulation;
struct Version {

octet major;
octet minor;

};
struct ProfileBody {

Version mior_version;
octet reserved;
TerminalId terminal_id;
sequence<octet> terminal_object_key;
sequence<IOP::TaggedComponent> components;

};
struct HomeLocationInfo {

HomeLocationAgent agent;
};
struct MobileObjectKey {

Version mior_version;
octet reserved;
TerminalId terminal_id;
sequence<octet> terminal_object_key;

};
enum HandoffStatus {
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 B-1

B

HANDOFF_SUCCESS,
HANDOFF_FAILURE,
NO_MAKE_BEFORE_BREAK

};
const octet TCP_TUNNELING = 0;
const octet UDP_TUNNELING = 1;
const octet WAP_TUNNELING = 2;
const octet L2CAP_TUNNELING = 3;
struct GTPInfo {

Version gtp_version;
octet protocol_level;
octet protocol_id;

// values 0xE0...0xFF are reserved for internal use
};
struct AccessBridgeTransportAddress {

GTPInfo tunneling_protocol;
sequence<octet> transport_address;

};
typedef sequence<AccessBridgeTransportAddress>

AccessBridgeTransportAddressList;
typedef string ObjectId; // same as CORBA::ORB::ObjectId
typedef sequence<ObjectId> ObjectIdList;

// same as CORBA::ORB::ObjectIdList
exception IllegalTargetBridge {};
exception TerminalNotHere {};
exception UnknownTerminalId {};
exception UnknownTerminalLocation {};
exception InvalidName{}; // same asCORBA::ORB::InvalidNam
interface HomeLocationAgent {

void update_location (
in TerminalId terminal_id,
in AccessBridge new_access_bridge

) raises (UnknownTerminalId, IllegalTargetBridge);
boolean deregister_terminal (

in TerminalId terminal_id,
in AccessBridge old_access_bridge

) raises (UnknownTerminalId);
void query_location (

in TerminalId terminal_id,
out AccessBridge current_access_bridge

) raises (UnknownTerminalId, UnknownTerminalLocation);
ObjectIdList list_initial_services ();
Object resolve_initial_references (

in ObjectId identifier
) raises (InvalidName);

};
interface HandoffCallback {

void report_handoff_status (
in HandoffStatus status

);
};
interface AccessBridge {

ObjectIdList list_initial_services ();
Object resolve_initial_references (

 in ObjectId identifier
B-2 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

B

) raises (InvalidName);
boolean terminal_attached (

in TerminalId terminal_id
);
void get_address_info (

out AccessBridgeTransportAddressList transport_address_list
);
void start_handoff (

in TerminalId terminal_id,
in AccessBridge new_access_bridge,
in HandoffCallback handoff_callback_target

);
void transport_address_request (

in TerminalId terminal_id,
out AccessBridgeTransportAddressList

new_access_bridge_addresses,
out boolean terminal_accepted

);
void handoff_completed (

in TerminalId terminal_id,
in HandoffStatus status

);
void handoff_in_progress (

in TerminalId terminal_id,
in AccessBridge new_access_bridge

);
void recovery_request (

in TerminalId terminal_id,
in AccessBridge new_access_bridge,
in unsigned short highest_gtp_seqno_received_at_terminal,
out unsigned short highest_gtp_seqno_received_at_access_bridge

) raises (UnknownTerminalId);
void gtp_to_terminal (

in TerminalId terminal_id,
in AccessBridge old_access_bridge,
in unsigned long gtp_message_id,
in GTPEncapsulation gtp_message

) raises (TerminalNotHere);
void gtp_from_terminal (

in TerminalId terminal_id,
in unsigned long gtp_message_id,
in GTPEncapsulation gtp_message

) raises (UnknownTerminalId);
void gtp_acknowledge (

in unsigned long gtp_message_id,
in GTP::ForwardStatus status

);
void handoff_notice (

in TerminalId terminal_id,
in AccessBridge new_access_bridge

);
void subscribe_handoff_notice (

in TerminalId terminal_id,
in AccessBridge interested_access_bridge

) raises (TerminalNotHere);
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 B-3

B

};
};
#endif

B.2 Module MobilityEventNotification
//File: MobileTerminalNotification.idl
#ifndef _MOBILE_TERMINAL_NOTIFICATION_IDL_
#define _MOBILE_TERMINAL_NOTIFICATION_IDL_
#include <orb.idl>
#include <IOP.idl>
#include "MobileTerminal.idl"
#pragma prefix "omg.org"
module MobileTerminalNotification {

struct HandoffDepartureEvent {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::AccessBridge new_access_bridge;

};
struct HandoffArrivalEvent {

MobileTerminal::TerminalId terminal_id;
MobileTerminal::AccessBridge old_access_bridge;

};
struct AccessDropoutEvent {

MobileTerminal::TerminalId terminal_id;
};
struct AccessRecoveryEvent {

MobileTerminal::TerminalId terminal_id;
};
struct TerminalHandoffEvent {

MobileTerminal::AccessBridge new_access_bridge;
};
struct TerminalDropoutEvent {

MobileTerminal::TerminalId terminal_id;
};
struct TerminalRecoveryEvent {

MobileTerminal::TerminalId terminal_id;
};

};
#endif

B.3 Module GTP GIOP Tunneling Protocol
//File: GTP.idl
#ifndef _GTP_IDL_
#define _GTP_IDL_
#include "MobileTerminal.idl"
#pragma prefix "omg.org"
module GTP {

struct GTPHeader {
octet gtp_msg_type;
octet flags;
unsigned short seq_no;
unsigned short last_seq_no_received;
B-4 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

B

unsigned short content_length;
};
 typedef short RequestType;
const short INITIAL_REQUEST = 0;
const short RECOVERY_REQUEST = 1;
const short NETWORK_REQUEST = 2;
const short TERMINAL_REQUEST = 3;
struct InitialRequestBody {

MobileTerminal::TerminalId terminal_id;
MobileTerminal::HomeLocationAgent home_location_agent_reference;
unsigned long time_to_live_request;

};
struct RecoveryRequestBody {

MobileTerminal::TerminalId terminal_id;
MobileTerminal::HomeLocationAgent home_location_agent_reference;

struct LastAccessBridgeInfo {
MobileTerminal::AccessBridge access_bridge_reference;
unsigned long time_to_live_request;
unsigned short last_seq_no_received;

} last_access_bridge_info;
unsigned long time_to_live_request;

};
typedef RecoveryRequestBody NetworkRequestBody;
typedef RecoveryRequestBody TerminalRequestBody;
union EstablishTunnelRequestBody switch (RequestType) {

case INITIAL_REQUEST: InitialRequestBody initial_request_body;
case RECOVERY_REQUEST: RecoveryRequestBody

recovery_request_body;
case NETWORK_REQUEST: NetworkRequestBody network_request_body;
case TERMINAL_REQUEST: TerminalRequestBody terminal_request_body;

};
typedef short ReplyType;
const short INITIAL_REPLY = 0;
const short RECOVERY_REPLY = 1;
const short NETWORK_REPLY = 2;
const short TERMINAL_REPLY = 3;
enum AccessStatus {

ACCESS_ACCEPT,
ACCESS_ACCEPT_RECOVERY,
ACCESS_ACCEPT_HANDOFF,
ACCESS_ACCEPT_LOCAL,
ACCESS_REJECT_LOCATION_UPDATE_FAILURE,
ACCESS_REJECT_ACCESS_DENIED,
ACCESS_REJECT_RECOVERY_FAILURE

};
struct InitialReplyBody {

AccessStatus status;
MobileTerminal::AccessBridge access_bridge_reference;
unsigned long time_to_live_reply;

};
struct RecoveryReplyBody {

AccessStatus status;
MobileTerminal::AccessBridge access_bridge_reference;
struct OldAccessBridgeInfo {

unsigned long time_to_live_reply;
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 B-5

B

unsigned short last_seq_no_received;
} old_access_bridge_info;
unsigned long time_to_live_reply;

};
typedef RecoveryReplyBody NetworkReplyBody;
typedef RecoveryReplyBody TerminalReplyBody;
union EstablishTunnelReplyBody switch (ReplyType) {

case INITIAL_REPLY: InitialReplyBody initial_reply_body;
case RECOVERY_REPLY: RecoveryReplyBody recovery_reply_body;
case NETWORK_REPLY: NetworkReplyBody network_reply_body;
case TERMINAL_REPLY: TerminalReplyBody terminal_reply_body;

};
struct ReleaseTunnelRequestBody {

unsigned long time_to_live;
};
struct ReleaseTunnelReplyBody {

unsigned long time_to_live;
};
struct HandoffTunnelRequestBody {

MobileTerminal::AccessBridgeTransportAddressList
new_access_bridge_transport_address_list;

};
struct HandoffTunnelReplyBody {

MobileTerminal::HandoffStatus status;
};
struct OpenConnectionRequestBody {

GIOP::TargetAddress target_object_reference;
unsigned long open_connection_request_id;
unsigned long timeout;

};
enum OpenConnectionStatus {

OPEN_SUCCESS,
OPEN_FAILED_UNREACHABLE_TARGET,
OPEN_FAILED_OUT_OF_RESOURCES,
OPEN_FAILED_TIMEOUT,
OPEN_FAILED_UNKNOWN_REASON

};
struct OpenConnectionReplyBody {

unsigned long open_connection_request_id;
OpenConnectionStatus status;
unsigned long connection_id;

};
struct CloseConnectionRequestBody {

unsigned long connection_id;
};
enum CloseConnectionStatus {

CLOSE_SUCCESS,
CLOSE_FAILED_INVALID_CONNECTION_ID,
CLOSE_FAILED_UNKNOWN_REASON

};
struct CloseConnectionReplyBody {

unsigned long connection_id;
CloseConnectionStatus status;

};
enum ConnectionCloseReason {
B-6 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

B

CLOSE_REASON_REMOTE_END_CLOSE,
CLOSE_REASON_RESOURCE_CONSTRAINT,
CLOSE_REASON_IDLE_CLOSED,
CLOSE_REASON_TIME_TO_LIVE_EXPIRED,
CLOSE_REASON_UNKNOWN_REASON

};
struct ConnectionCloseIndicationBody {

unsigned long connection_id;
ConnectionCloseReason reason;

};
struct GIOPDataBody {

unsigned long connection_id;
unsigned long giop_message_id;
MobileTerminal::GIOPEncapsulation giop_message;

};
enum DeliveryStatus {

DELIVERY_FAILED_INVALID_CONNECTION_ID,
DELIVERY_FAILED_UNKNOWN_REASON

};
struct GIOPDataErrorBody {

unsigned long giop_message_id;
DeliveryStatus status;

};
struct GTPForwardBody {

MobileTerminal::AccessBridge access_bridge_reference;
unsigned long gtp_message_id;
MobileTerminal::GTPEncapsulation gtp_message;

};
enum ForwardStatus {

FORWARD_SUCCESS,
FORWARD_ERROR_ACCESS_BRIDGE_UNREACHABLE,
FORWARD_ERROR_UNKNOWN_SENDER,
FORWARD_UNKNOWN_FORWARD_ERROR

};
struct GTPForwardReplyBody {

unsigned long gtp_message_id;
ForwardStatus status;

};
enum ErrorCode {

ERROR_UNKNOWN_SENDER,
ERROR_PROTOCOL_ERROR,
ERROR_UNKNOWN_FATAL_ERROR

};
struct ErrorBody {

unsigned short gtp_seq_no;
ErrorCode error_code;

};
};
#endif
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 B-7

B

B-8 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

Index
A
Access Bridge 2-2, 3-2, 5-1
Access Recovery 8-10
access recovery 8-2
Acknowledge 7-24
Address information 3-2
Architecture 2-2

C
CloseConnectionReply Message 7-14
CloseConnectionRequest Message 7-13
ConnectionCloseIndication Message 7-15
CORBA

documentation set vi
general language mapping requirements 3-4

CORBA Security Service 4-1, 5-2

D
Design principles 1-1
Discovery operations 4-4, 5-1
DOLMEN solution 1-2

E
Error Message 7-19

F
Fragmentation 7-22

G
GIOP 1.0 and 1.1 3-4
GIOP tunnel 7-1
GIOP Tunneling Protocol 5-1
GIOP Tunneling Protocol (GTP) 7-1
GIOPData Message 7-16
GIOPDataError Message 7-17
GTP Message Forwarding 8-14
GTP Messages 7-3
GTPData 7-24
GTPForward Message 7-17
GTPForwardReply Message 7-18

H
handoff 8-2
Handoff Procedure 8-6
HandoffTunnelReply Message 7-11
HandoffTunnelRequest Message 7-10
Home Domain 4-4
Home Location Agent 2-1, 4-1
Home Location Agent (HLA) 3-2

I
IIOP Profile 3-1
InitialAccessReply 7-23
InitialAccessRequest 7-22
Initiation 8-2
Interoperable Object Reference (IOR) 3-1

M
Message Forwarding 8-14
Message Processing 4-4, 5-2
Message Sequence Chart 8-9, 8-13
Message sequence chart 8-6
Messages (GTP) 7-3
Mobile IOR 2-1, 3-1
Mobile Object Key (MOK) 3-4
Mobile object key format 3-2
Mobile terminal profile 3-2
MobileTerminal module 3-5
Mobility Event Notifications 5-3, 6-1

N
network initiated 8-2
Network initiated handoff 8-3
New access bridge 8-4, 8-8
Notification Service Event Channel 6-1

O
Object Management Group v
Old access bridge 8-3, 8-9
OpenConnectionReply Message 7-12
OpenConnectionRequest Message 7-12

P
Pause 7-23

Q
Query operations 5-2

R
Resume 7-24

S
Security Service 4-1, 5-2, A-1
Simplicity 1-1

T
TAG_HOME_LOCATION_INFO 3-3
TCP Tunneling 7-20
Terminal Bridge 2-2, 6-1, 8-8
Terminal bridge 8-5
Terminal Ids 4-5
terminal initiated 8-2
Terminal initiated handoff 8-8
Terminal Tracking 8-16
Transparency 1-1
Tunnel 7-1
Tunnel Establishment 7-2

U
UDP Tunneling 7-20

W
WAP Tunneling Protocol 7-26
WAP Tunneling Protocol (WAPTP) 7-26
WAPTP address types 7-27
Wireless Application Protocol (WAP) 7-26
May 2005 Wireless Access & Terminal Mobility in CORBA, v1.2 Index-1

Index
Index-2 Wireless Access & Terminal Mobility in CORBA, v1.2 May 2005

Wireless Access & Terminal Mobility in CORBA, v1.2
Reference Sheet

The document history for this specification (version 1.2) is as follows:

• formal/04-04-02 - base document (version 1.1)

• dtc/04-10-07 - RTF report

• dtc/04-09-02 - RTF convenience document

	Preface
	About the Object Management Group
	What is CORBA?

	Contacting OMG
	Acknowledgments

	1. Overview
	1.1 Design Rationale
	1.2 Proof of Concept
	1.3 References

	2. Architectural Framework
	2.1 Key Concepts
	2.2 Overall Architecture

	3. Mobile IOR
	3.1 IIOP Profiles in Mobile IOR
	3.1.1 Address information in IIOP Profiles in Mobile IORs
	3.1.2 Mobile Object Key Format

	3.2 The Mobile Terminal Profile
	3.2.1 Mobile Terminal Profile Structure
	3.2.2 TAG_HOME_LOCATION_INFO Component

	3.3 Translation to Mobile Target Object
	3.4 Interoperability with GIOP 1.0 and 1.1
	3.5 Additional Type Definitions

	4. Home Location Agent
	4.1 Location Update
	4.2 Discovery
	4.3 Message Processing
	4.4 Terminal Ids

	5. Access Bridge
	5.1 Discovery
	5.2 Query
	5.3 Message Processing
	5.4 Mobility Event Notifications

	6. Terminal Bridge
	6.1 Mobility Event Notifications

	7. GIOP Tunneling
	7.1 Tunnel Establishment
	7.1.1 Transport End-Point Detection

	7.2 GIOP Tunneling Protocol
	7.2.1 GTP Message Structure
	7.2.2 GTP Messages
	7.2.3 IdleSync Message
	7.2.4 EstablishTunnelRequest Message
	7.2.5 EstablishTunnelReply Message
	7.2.6 ReleaseTunnelRequest Message
	7.2.7 ReleaseTunnelReply Message
	7.2.8 HandoffTunnelRequest Message
	7.2.9 HandoffTunnelReply Message
	7.2.10 OpenConnectionRequest Message
	7.2.11 OpenConnectionReply Message
	7.2.12 CloseConnectionRequest Message
	7.2.13 CloseConnectionReply Message
	7.2.14 ConnectionCloseIndication Message
	7.2.15 GIOPData Message
	7.2.16 GIOPDataError Message
	7.2.17 GTPForward Message
	7.2.18 GTPForwardReply Message
	7.2.19 Error Message

	7.3 TCP Tunneling
	7.4 UDP Tunneling
	7.4.1 UDP Tunneling Protocol
	7.4.2 Sequence Numbering
	7.4.3 Retransmission Policy
	7.4.4 Fragmentation
	7.4.5 InitialAccessRequest
	7.4.6 InitialAccessReply
	7.4.7 Pause
	7.4.8 Resume
	7.4.9 Acknowledge
	7.4.10 GTPData
	7.4.11 Close Request
	7.4.12 CloseReply
	7.4.13 CloseIndication

	7.5 WAP Tunneling
	7.5.1 Wireless Datagram Protocol
	7.5.2 WAP Tunneling Protocol
	7.5.3 WAPTP address types

	7.6 Bluetooth Tunneling
	7.6.1 LTP Tunneling Protocol
	7.6.2 Fragmentation

	8. Handoff and Access Recovery
	8.1 Initiation
	8.2 Network Initiated Handoff
	8.2.1 Old Access Bridge
	8.2.2 New Access Bridge
	8.2.3 Terminal Bridge
	8.2.4 Message Sequence Chart
	8.2.5 Alternative Handoff Procedure
	8.2.6 IDL

	8.3 Terminal Initiated Handoff
	8.3.1 Terminal Bridge
	8.3.2 New Access Bridge
	8.3.3 Old Access Bridge
	8.3.4 Message Sequence Chart
	8.3.5 IDL

	8.4 Access Recovery
	8.4.1 Recovery to the Old Access Bridge
	8.4.2 Recovery to New Access Bridge

	8.5 GTP Message Forwarding
	8.6 Terminal Tracking

	A. Conformance
	OMG IDL

